HTTE: A Hybrid Technique For Travel Time Estimation In Sparse Data Environments

Travel time estimation is a critical task, useful to many urban applications at the individual citizen and the stakeholder level. This paper presents a novel hybrid algorithm for travel time estimation that leverages historical and sparse real-time trajectory data. Given a path and a departure time we estimate the travel time taking into account the historical information, the real-time trajectory data and the correlations among different road segments. We detect similar road segments using historical trajectories, and use a latent representation to model the similarities. Our experimental evaluation demonstrates the effectiveness of our approach.

[1]  Ying Zhu,et al.  DeepSense: A novel learning mechanism for traffic prediction with taxi GPS traces , 2014, 2014 IEEE Global Communications Conference.

[2]  Zheng Wang,et al.  Multi-task Representation Learning for Travel Time Estimation , 2018, KDD.

[3]  Christian S. Jensen,et al.  Stochastic Weight Completion for Road Networks Using Graph Convolutional Networks , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[4]  Leonidas J. Guibas,et al.  Urban Travel Time Prediction using a Small Number of GPS Floating Cars , 2017, SIGSPATIAL/GIS.

[5]  Leonidas J. Guibas,et al.  Pathlet learning for compressing and planning trajectories , 2013, SIGSPATIAL/GIS.

[6]  Weiwei Sun,et al.  DeepTravel: a Neural Network Based Travel Time Estimation Model with Auxiliary Supervision , 2018, IJCAI.

[7]  Ugur Demiryurek,et al.  Latent Space Model for Road Networks to Predict Time-Varying Traffic , 2016, KDD.

[8]  Masashi Sugiyama,et al.  Trajectory Regression on Road Networks , 2011, AAAI.

[9]  Zheng Wang,et al.  Learning to Estimate the Travel Time , 2018, KDD.

[10]  Wei Guo,et al.  Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations , 2016, ISPRS Int. J. Geo Inf..

[11]  Matthias Weidlich,et al.  Traveling time prediction in scheduled transportation with journey segments , 2017, Inf. Syst..

[12]  Ruimin Li,et al.  Lane-based real-time queue length estimation using license plate recognition data , 2015 .

[13]  Yi Zhang,et al.  A BPCA based missing value imputing method for traffic flow volume data , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[14]  Christian S. Jensen,et al.  Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models , 2013, Proc. VLDB Endow..

[15]  Chao Yang,et al.  A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data , 2016 .

[16]  Christian S. Jensen,et al.  PACE: a PAth-CEntric paradigm for stochastic path finding , 2017, The VLDB Journal.

[17]  Christian S. Jensen,et al.  Using Incomplete Information for Complete Weight Annotation of Road Networks , 2013, IEEE Transactions on Knowledge and Data Engineering.

[18]  Cyrus Shahabi,et al.  Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting , 2017, ICLR.

[19]  Yu Zheng,et al.  Travel time estimation of a path using sparse trajectories , 2014, KDD.

[20]  N. N. Glushchenko,et al.  Pepper plants response to metal nanoparticles and chitosan in nutrient media , 2019, 2019.

[21]  Alexandre M. Bayen,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1 Learning the Dynamics of Arterial Traffic From Probe , 2022 .

[22]  Dimitrios Gunopulos,et al.  REMI: A framework of reusable elements for mining heterogeneous data with missing information , 2018, Journal of Intelligent Information Systems.

[23]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[24]  Christian S. Jensen,et al.  Path Cost Distribution Estimation Using Trajectory Data , 2016, Proc. VLDB Endow..

[25]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[26]  Bin Yu,et al.  Bus arrival time prediction at bus stop with multiple routes , 2011 .

[27]  Daniel Kifer,et al.  A simple baseline for travel time estimation using large-scale trip data , 2015, SIGSPATIAL/GIS.

[28]  Junjie Wu,et al.  Traffic Speed Prediction and Congestion Source Exploration: A Deep Learning Method , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[29]  Alexander Skabardonis,et al.  Estimation of Truck Traffic Volume from Single Loop Detectors with Lane-to-Lane Speed Correlation , 2003 .

[30]  Satish V. Ukkusuri,et al.  Citywide Traffic Volume Estimation Using Trajectory Data , 2017, IEEE Transactions on Knowledge and Data Engineering.

[31]  Li Li,et al.  Efficient missing data imputing for traffic flow by considering temporal and spatial dependence , 2013 .

[32]  Lionel M. Ni,et al.  Time-Dependent Trajectory Regression on Road Networks via Multi-Task Learning , 2013, AAAI.

[33]  Haris N. Koutsopoulos,et al.  Travel time estimation for urban road networks using low frequency probe vehicle data , 2013, Transportation Research Part B: Methodological.

[34]  Satish V. Ukkusuri,et al.  Urban Link Travel Time Estimation Using Large-scale Taxi Data with Partial Information , 2013 .