An Interactive Approach for Multicriteria Decision Making Using a Tchebycheff Utility Function Approximation: AN INTERACTIVE APPROACH FOR MCDM USING A TCHEBYCHEFF UF APPROXIMATION

Multicriteria decision making (MCDM) can provide an efficient mean for considering various and conflicting objectives to reveal the alternative that maximizes the decision maker's (DM) utility. In this paper, we propose a new interactive MCDM method for implicit alternatives to help a DM obtain a most preferred solution. We employ a Tchebycheff function to generate weights for objectives consistent with the DM's responses to pairwise comparisons between alternatives and present a mixed integer linear programming formulation to generate these weights. Thus, we approximate the DM's utility function by a Tchebycheff function and generate weights consistent with the DM's responses. We test our approach with different true utility functions on various sized multiple criteria linear programming problems. The computational results show that even with non-Tchebycheff true utility functions, our method can generate alternatives very close to the optimal solution with few questions. The comparison of our results with other methods reveals its advantages. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  John R. Welch,et al.  A Context Algorithm for Pattern Recognition and Image Interpretation , 1971, IEEE Trans. Syst. Man Cybern..

[2]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[3]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[4]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[5]  Ching-Lai Hwang,et al.  Mathematical programming with multiple objectives: A tutorial , 1980, Comput. Oper. Res..

[6]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[7]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[8]  S. Zionts,et al.  Solving the Discrete Multiple Criteria Problem using Convex Cones , 1984 .

[9]  Stanley Zionts,et al.  An improved method for solving multiple criteria problems involving discrete alternatives , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[11]  Behnam Malakooti,et al.  An exact interactive method for exploring the efficient facets of multiple objective linear programming problems with quasi-concave utility functions , 1988, IEEE Trans. Syst. Man Cybern..

[12]  Behnam Malakooti Theories and an exact interactive paired-comparison approach for discrete multiple-criteria problems , 1989, IEEE Trans. Syst. Man Cybern..

[13]  Robert F. Dell,et al.  An interactive MCDM weight space reduction method utilizing a tchebycheff utility function , 1990 .

[14]  Ralph E. Steuer,et al.  Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next Ten Years , 1992 .

[15]  Srinivas Y. Prasad,et al.  Use of Convex Cones in Interactive Multiple Objective Decision Making , 1997 .

[16]  Minghe Sun,et al.  Interactive multiple objective programming using Tchebycheff programs and artificial neural networks , 2000, Comput. Oper. Res..

[17]  Murat Köksalan,et al.  A visual interactive approach for multiple criteria decision making with monotone utility functions , 2001, J. Oper. Res. Soc..

[18]  E. Stanley Lee,et al.  Discrete Multi-Level Programming in a Dynamic Environment , 2001 .

[19]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[20]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[21]  R. Stewart,et al.  IT/IS projects selection using multi‐criteria utility theory , 2002 .

[22]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[23]  PHELPS AND KÖKSALAN An Interactive Evolutionary Metaheuristic 2 . Multiobjective Combinatorial Optimization and Interactive Methods , 2014 .

[24]  Ignacy Kaliszewski,et al.  Out of the mist--towards decision-maker-friendly multiple criteria decision making support , 2004, Eur. J. Oper. Res..

[25]  M Köksalan,et al.  An interactive approach for multiobjective decision making , 2006, J. Oper. Res. Soc..

[26]  Jaehee Kim,et al.  A CHIM-based interactive Tchebycheff procedure for multiple objective decision making , 2006, Comput. Oper. Res..

[27]  João C. N. Clímaco,et al.  A review of interactive methods for multiobjective integer and mixed-integer programming , 2007, Eur. J. Oper. Res..

[28]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[29]  Kalyanmoy Deb,et al.  Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead , 2008, Manag. Sci..

[30]  Gade Pandu Rangaiah,et al.  Multi-Objective Optimization: Techniques and Applications in Chemical Engineering(With CD-ROM) , 2008 .

[31]  Annika Kangas,et al.  Measuring the Value of Information in Multicriteria Decisionmaking , 2010, Forest Science.

[32]  Jyrki Wallenius,et al.  Quantitative Comparison of Approximate Solution Sets for Multicriteria Optimization Problems with Weighted Tchebycheff Preference Function , 2010, Oper. Res..