2.5‐D inversion of frequency‐domain electromagnetic data generated by a grounded‐wire source

Interpretation of controlled‐source electromagnetic (CSEM) data is usually based on 1‐D inversions, whereas data of direct current (dc) resistivity and magnetotelluric (MT) measurements are commonly interpreted by 2‐D inversions. We have developed an algorithm to invert frequency‐Domain vertical magnetic data generated by a grounded‐wire source for a 2‐D model of the earth—a so‐called 2.5‐D inversion. To stabilize the inversion, we adopt a smoothness constraint for the model parameters and adjust the regularization parameter objectively using a statistical criterion. A test using synthetic data from a realistic model reveals the insufficiency of only one source to recover an acceptable result. In contrast, the joint use of data generated by a left‐side source and a right‐side source dramatically improves the inversion result. We applied our inversion algorithm to a field data set, which was transformed from long‐offset transient electromagnetic (LOTEM) data acquired in a Japanese oil and gas field. As dem...

[1]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[2]  Yosihiko Ogata,et al.  Likelihood analysis of spatial inhomogeneity for marked point patterns , 1988 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Hirotugu Akaike,et al.  Likelihood and the Bayes procedure , 1980 .

[5]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[6]  Y. Mitsuhata 2-D electromagnetic modeling by finite‐element method with a dipole source and topography , 2000 .

[7]  D. Oldenburg,et al.  Subspace inversion of electromagnetic data: application to mid‐ocean‐ridge exploration , 1995 .

[8]  Thorkild Maack Rasmussen,et al.  INVERSION OF MAGNETOTELLURIC DATA: A NON‐LINEAR LEAST‐SQUARES APPROACH1 , 1989 .

[9]  Kenneth L. Zonge,et al.  9. Controlled Source Audio-Frequency Magnetotellurics , 1991 .

[10]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[11]  T. Uchida,et al.  Smooth 2-D inversion for magnetotelluric data based on statistical criterion ABIC , 1993 .

[12]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[13]  W Hohmann Gerald,et al.  Numerical modeling for electromagnetic methods of geophysics , 1987 .

[14]  D. Oldenburg,et al.  Approximate sensitivities for the electromagnetic inverse problem , 1996 .

[15]  Martyn J. Unsworth,et al.  CSAMT exploration at Sellafield: Characterization of a potential radioactive waste disposal site , 2000 .

[16]  Max A. Meju,et al.  Geophysical data analysis , 1994 .

[17]  Martin D. Müller,et al.  Understanding LOTEM data from mountainous terrain , 2000 .

[18]  L. Pedersen,et al.  Inversion of controlled‐source tensor magnetotelluric data for a layered earth with azimuthal anisotropy , 2000 .

[19]  K. Strack,et al.  Exploration with Deep Transient Electromagnetics , 1992 .

[20]  Rapid relaxation inversion of CSAMT data , 1999 .

[21]  Y. Mitsuhata,et al.  Magnetotelluric survey for exploration of a volcanic‐rock reservoir in the Yurihara oil and gas field, Japan * , 1999 .

[22]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[23]  T. Habashy,et al.  Rapid 2.5‐dimensional forward modeling and inversion via a new nonlinear scattering approximation , 1994 .

[24]  Douglas W. Oldenburg,et al.  Calculation of sensitivities for the frequency-domain electromagnetic problem , 1994 .

[25]  Yutaka Murakami,et al.  The Fourier transform of controlled-source time-domain electromagnetic data by smooth spectrum inversion , 2001 .