The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites

Abstract The magnetoelastic homogenization framework and the partial decoupling approximation proposed by Ponte Castaneda and Galipeau (2011) are used to estimate material properties for a class of magnetically susceptible elastomers. Specifically, we consider composites consisting of aligned, ellipsoidal magnetic particles distributed randomly with “ellipsoidal” symmetry under combined magnetic and mechanical loading. The model captures the coupling between the magnetic and mechanical fields, including the effects of magnetic saturation. The results help elucidate the effects of particle shape, distribution, and concentration on properties such as the magnetostriction, actuation stress, magnetic modulus, and magnetization behavior of a magnetorheological composite.

[1]  Gregory P. Carman,et al.  Large magnetostrictive response of Terfenol-D resin composites (invited) , 2000 .

[2]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[3]  R. James,et al.  Magnetostrictive composites in the dilute limit , 2006 .

[4]  P. P. Castañeda,et al.  A finite-strain constitutive theory for electro-active polymer composites via homogenization , 2012 .

[5]  Q. Pei,et al.  High-field deformation of elastomeric dielectrics for actuators , 2000 .

[6]  John Matthew Ginder,et al.  MAGNETOSTRICTIVE PHENOMENA IN MAGNETORHEOLOGICAL ELASTOMERS , 2002 .

[7]  N. Triantafyllidis,et al.  On finitely strained magnetorheological elastomers , 2004 .

[8]  V. Iannotti,et al.  Influence of particle pre-orientation on elastomagnetic effect in a composite material of ellipsoidal Ni microparticles in a silicone matrix , 2003 .

[9]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[10]  Jiun-Shyan Chen,et al.  Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles , 2006 .

[11]  E. Galipeau,et al.  Non-linear homogenization of magnetorheological elastomers at finite strain , 2012 .

[12]  D. Dugdale,et al.  Magnetic properties of materials , 1993 .

[13]  J. Willis,et al.  The effect of spatial distribution on the effective behavior of composite materials and cracked media , 1995 .

[14]  S. Bednarek The giant magnetostriction in ferromagnetic composites within an elastomer matrix , 1999 .

[15]  Evan Galipeau,et al.  Homogenization-based constitutive models for magnetorheological elastomers at finite strain , 2011 .

[16]  P. Ponte Castañeda,et al.  Three-point bounds and other estimates for strongly nonlinear composites , 1998 .

[17]  J. Ou,et al.  Magnetostrictive effect of magnetorheological elastomer , 2008 .

[18]  T. H. Laby,et al.  Tables of physical and chemical constants. 15th Edition , 1986 .

[19]  Jan Smit,et al.  Magnetic properties of materials , 1971 .

[20]  Pedro Ponte Castañeda Bounds and estimates for the properties of nonlinear heterogeneous systems , 1992 .

[21]  O. Bruno,et al.  On the magneto-elastic properties of elastomer–ferromagnet composites , 2001 .

[22]  Evan Galipeau,et al.  A finite-strain constitutive model for magnetorheological elastomers: Magnetic torques and fiber rotations , 2013 .

[23]  J. Carlson,et al.  A model of the behaviour of magnetorheological materials , 1996 .

[24]  J. Cavaillé,et al.  Shape effect in the magnetostriction of ferromagnetic composite , 2010 .

[25]  H. Yin,et al.  Magnetoelastic modelling of composites containing randomly dispersed ferromagnetic particles , 2006 .