Réseaux de neurones récurrents à fonctions de base radiales: RRFR Application au pronostic
暂无分享,去创建一个
[1] H. Demmou,et al. Temporal sequence learning with neural networks for process fault detection , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.
[2] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[3] N. Hernández-Gress. Système de diagnostic par réseaux de neurones et statistiques : application à la détection d'hypovigilance du conducteur automobile , 1998 .
[4] Béatrice Devauchelle-Gach. Diagnostic mécanique des fatigues sur les structures soumises à des vibrations en ambiance de travail , 1991 .
[5] Sung Yang Bang,et al. An Efficient Method to Construct a Radial Basis Function Neural Network Classifier , 1997, Neural Networks.
[6] Claire Cussenot. Surveillance et diagnostic de la chaine de depollution d'une automobile , 1996 .
[7] Stephen Jose Hanson,et al. A Neural Network Autoassociator for Induction Motor Failure Prediction , 1995, NIPS.
[8] Giovanni Soda,et al. Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks , 1995, IEEE Trans. Knowl. Data Eng..
[9] Joydeep Ghosh,et al. Knowledge enhancement and reuse with radial basis function networks , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).
[10] J. Wade Davis,et al. Statistical Pattern Recognition , 2003, Technometrics.
[11] Noureddine Zerhouni,et al. The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA.
[12] Hervé Poulard. Statistiques et réseaux de neurones pour un système de diagnostic : application au diagnostic de pannes automobiles. (Statistic and neural networks for a diagnosis system: Application to automotive failure detection) , 1996 .
[13] Lei Xu,et al. RBF nets, mixture experts, and Bayesian Ying-Yang learning , 1998, Neurocomputing.
[14] Hamid Demmou,et al. Using Self-Recurrent Neurons for Fault Detection and Diagnosis , 1995 .
[15] Michael I. Jordan. Serial Order: A Parallel Distributed Processing Approach , 1997 .
[16] Abdoul Karim Armand Toguyeni. Surveillance et diagnostic en ligne dans les ateliers flexibles de l'industrie manufacturière , 1992 .
[17] N. Zerhouni,et al. From the spherical to an elliptic form of the dynamic RBF neural network influence field , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).
[18] Venkat Venkatasubramanian,et al. Challenges in the industrial applications of fault diagnostic systems , 2000 .
[19] Sun-Yuan Kung,et al. Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification , 2000, IEEE Trans. Neural Networks Learn. Syst..
[20] O. Daniel,et al. Les réseaux de Pétri stochastiques pour l'évaluation des attributs de la sureté de fonctionnement des systèmes manufacturiers , 1995 .
[21] Mohamad T. Musavi,et al. On the training of radial basis function classifiers , 1992, Neural Networks.
[22] Geoffrey E. Hinton,et al. Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..
[23] Terrence J. Sejnowski,et al. NETtalk: a parallel network that learns to read aloud , 1988 .
[24] Marios M. Polycarpou,et al. Neural-network-based robust fault diagnosis in robotic systems , 1997, IEEE Trans. Neural Networks.
[25] Tomaso A. Poggio,et al. Extensions of a Theory of Networks for Approximation and Learning , 1990, NIPS.
[26] Raghunathan Rengaswamy,et al. A syntactic pattern-recognition approach for process monitoring and fault diagnosis , 1995 .
[27] References , 1971 .
[28] Alain Grumbach,et al. A Kohonen Map for Temporal Sequences , 1996 .
[29] P. E. Keller,et al. Three neural network based, sensor systems for environmental monitoring , 1994, Proceedings of ELECTRO '94.
[30] Joydeep Ghosh,et al. A neural network based hybrid system for detection, characterization, and classification of short-duration oceanic signals , 1992 .
[31] ’. aboratoired,et al. APPLICATION OF THE DYNAMIC RBF NETWORK IN A MONITORING PROBLEM OF THE PRODUCTION SYSTEMS , 2002 .
[32] Heikki N. Koivo,et al. Artificial neural networks in fault diagnosis and control , 1994 .
[33] James M. Hutchinson,et al. A radial basis function approach to financial time series analysis , 1993 .
[34] Jonathan S. Maltz,et al. NEURAL NETWORKS FOR PNEUMATIC ACTUATOR FAULT DETECTION , 1999 .
[35] Racoceanu Daniel,et al. APPLICATION OF THE DYNAMIC RBF NETWORK IN A MONITORING PROBLEM OF THE PRODUCTION SYSTEMS , 2002 .
[36] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[37] Michael R. Berthold,et al. A time delay radial basis function network for phoneme recognition , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).
[38] P. Weber. Diagnostic de procédé par l'analyse des estimations paramétriques de modèles de représentation à temps discret , 1999 .
[39] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[40] P. Werbos,et al. Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .
[41] Noureddine Zerhouni,et al. Modular modeling and analysis of a distributed production system with distant specialised maintenance , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).
[42] Christophe Combastel. Méthodes d'aide à la décision pour la détection et la localisation de défauts dans les entraînements électriques , 2000 .
[43] Ronald J. Williams,et al. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.
[44] Z. Ryad,et al. The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).
[45] J J Hopfield,et al. Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.
[46] M. J. Hudak. RCE classifiers: theory and practice , 1992 .
[47] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[48] Jeffrey L. Elman,et al. Finding Structure in Time , 1990, Cogn. Sci..
[49] Michael R. Berthold,et al. Boosting the Performance of RBF Networks with Dynamic Decay Adjustment , 1994, NIPS.
[50] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[51] M. Basseville,et al. Surveillance et diagnostic de systèmes dynamiques: approches complémentaires du traitement de signal et de l'intelligence artificielle , 1996 .
[52] Marios M. Polycarpou,et al. Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..
[53] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[54] Padhraic Smith,et al. Detecting novel fault conditions with hidden Markov models and neural networks , 1994 .
[55] M.H. Hassoun,et al. Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.