Structure and function of the T‐loop structural motif in noncoding RNAs

The T‐loop is a frequently occurring five‐nucleotide motif found in the structure of noncoding RNAs where it is commonly assumed to play an important role in stabilizing the tertiary RNA structure by facilitating long‐range interactions between different regions of the molecule. T‐loops were first identified in tRNAPhe and a formal consensus sequence for this motif was formulated and later revised based on analyses of the crystal structures of prokaryotic ribosomal RNAs and RNase P and the corresponding primary sequence of their orthologues. In the past decade, several new structures of large RNA molecules have been added to the RCSB Protein Data Bank, including the eukaryotic ribosome, a self‐splicing group II intron, numerous synthetases in complex with their cognate transfer RNAs (tRNAs), transfer‐messenger RNA (tmRNA) in complex with SmpB, several riboswitches, and a complex of bacterial RNase P bound to its tRNA substrate. In this review, the search for T‐loops is extended to these new RNA molecules based on the previously established structure‐based criteria. The review highlights and discusses the function and additional roles of T‐loops in four broad categories of RNA molecules, namely tRNAs, ribosomal RNAs (rRNAs), P RNAs, and RNA genetic elements. Additionally, the potential application for T‐loops as interaction modules is also discussed. WIREs RNA 2013, 4:507–522. doi: 10.1002/wrna.1175

[1]  S. Martinis,et al.  Structural dynamics of the aminoacylation and proof-reading functional cycle of bacterial leucyl-tRNA synthetase , 2012, Nature Structural &Molecular Biology.

[2]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[3]  A Yonath,et al.  Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. , 2000, Cell.

[4]  T. Steitz,et al.  The roles of RNA in the synthesis of protein. , 2011, Cold Spring Harbor perspectives in biology.

[5]  A. Serganov,et al.  Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch , 2006, Nature.

[6]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[7]  J. Doudna,et al.  Structural Insights into Group II Intron Catalysis and Branch-Site Selection , 2002, Science.

[8]  G. Fox,et al.  Frequent occurrence of the T-loop RNA folding motif in ribosomal RNAs. , 2002, RNA.

[9]  Harry F. Noller,et al.  Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements , 2014, Cell.

[10]  A. Ferré-D’Amaré,et al.  Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. , 2006, Structure.

[11]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[12]  E. Westhof,et al.  Analysis of RNA motifs. , 2003, Current opinion in structural biology.

[13]  Eric Westhof,et al.  Nucleic Acids and Molecular Biology , 1994, Nucleic Acids and Molecular Biology.

[14]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[15]  R. Tsien,et al.  Decoding in the Absence of a Codon by tmRNA and SmpB in the Ribosome , 2012 .

[16]  Toshimichi Ikemura,et al.  tRNADB-CE 2011: tRNA gene database curated manually by experts , 2010, Nucleic Acids Res..

[17]  O. Uhlenbeck,et al.  Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Selmer,et al.  Crystal Structures of the Ribosome in Complex with Release Factors RF1 and RF2 Bound to a Cognate Stop Codon , 2005, Cell.

[19]  K. Collins,et al.  Structured non-coding RNAs and the RNP Renaissance. , 2008, Current opinion in chemical biology.

[20]  Craig L. Zirbel,et al.  Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking , 2012 .

[21]  J. McCutcheon,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. , 2001, Journal of molecular biology.

[22]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[23]  A. S. Krasilnikov,et al.  Crystal structure of the specificity domain of ribonuclease P , 2003, Nature.

[24]  Yong-Gui Gao,et al.  The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State , 2009, Science.

[25]  B. Felden,et al.  Transfer RNAAla recognizes transfer‐messenger RNA with specificity; a functional complex prior to entering the ribosome? , 2001, The EMBO journal.

[26]  N. Pace,et al.  Crystal structure of a bacterial ribonuclease P RNA. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[28]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[29]  A. Morillon,et al.  Noncoding RNAs in gene regulation , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[30]  A. Pyle,et al.  Structural basis for exon recognition by a group II intron , 2008, Nature Structural &Molecular Biology.

[31]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[32]  P. Agris,et al.  Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding. , 2002, Nucleic acids research.

[33]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  James W. Brown The ribonuclease P database , 1998, Nucleic Acids Res..

[35]  I. Tinoco,et al.  RNA folding: Pseudoknots, loops and bulges , 1989, BioEssays : news and reviews in molecular, cellular and developmental biology.

[36]  Jimin Wang,et al.  Tertiary architecture of the Oceanobacillus iheyensis group II intron. , 2009, RNA.

[37]  N. Ban,et al.  Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. , 2008, Journal of the American Chemical Society.

[38]  Tao Pan,et al.  Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA , 2010, Nature.

[39]  P. Moore,et al.  Structural motifs in RNA. , 1999, Annual review of biochemistry.

[40]  M. Yusupov,et al.  Crystal Structure of the Eukaryotic Ribosome , 2010, Science.

[41]  T. Cech,et al.  Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. , 2004, Molecular cell.

[42]  E. Westhof,et al.  The building blocks and motifs of RNA architecture. , 2006, Current opinion in structural biology.

[43]  A. S. Krasilnikov,et al.  Basis for Structural Diversity in Homologous RNAs , 2004, Science.

[44]  A. Ferré-D’Amaré,et al.  Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.

[45]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[46]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[47]  Alfonso Mondragón,et al.  Emerging structural themes in large RNA molecules. , 2011, Current opinion in structural biology.

[48]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[49]  S. Brenner,et al.  RNA structural motifs: building blocks of a modular biomolecule , 2005, Quarterly Reviews of Biophysics.

[50]  D. Bartel,et al.  A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination , 2010, Nature Structural &Molecular Biology.

[51]  P. Moore,et al.  The three-dimensional structure of the ribosome and its components. , 1998, Annual review of biophysics and biomolecular structure.

[52]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[53]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[54]  A. S. Krasilnikov,et al.  On the occurrence of the T-loop RNA folding motif in large RNA molecules. , 2003, RNA.

[55]  R. Montange,et al.  Riboswitches: emerging themes in RNA structure and function. , 2008, Annual review of biophysics.

[56]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[57]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[58]  N. Ban,et al.  Structure of the Eukaryotic Thiamine Pyrophosphate Riboswitch with Its Regulatory Ligand , 2006, Science.

[59]  B. Clark,et al.  Structure of yeast phenylalanine tRNA at 3 Å resolution , 1974, Nature.

[60]  S. Holbrook Structural principles from large RNAs. , 2008, Annual review of biophysics.

[61]  I. Wool,et al.  The conformation of the sarcin/ricin loop from 28S ribosomal RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Brice Felden,et al.  Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB , 2003, Nature.

[63]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[64]  P. Moore,et al.  The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. , 2000, RNA.

[65]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[66]  A. Serganov,et al.  Metabolite recognition principles and molecular mechanisms underlying riboswitch function. , 2012, Annual review of biophysics.

[67]  Thomas L. James,et al.  Structure of the dimer a initiation complex of HIV-1 genomic RNA , 1998, Nature Structural Biology.

[68]  V. Ramakrishnan,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. , 2002, Journal of molecular biology.

[69]  O. Nureki,et al.  Structural basis for translational fidelity ensured by transfer RNA lysidine synthetase , 2009, Nature.

[70]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[71]  Batey,et al.  Tertiary Motifs in RNA Structure and Folding. , 1999, Angewandte Chemie.

[72]  A. Serganov,et al.  Ribozymes, riboswitches and beyond: regulation of gene expression without proteins , 2007, Nature Reviews Genetics.

[73]  R. Gutell,et al.  The lonepair triloop: a new motif in RNA structure. , 2003, Journal of molecular biology.

[74]  Jeannie T. Lee Epigenetic Regulation by Long Noncoding RNAs , 2012, Science.

[75]  A. S. Krasilnikov,et al.  Crystal structure of the RNA component of bacterial ribonuclease P , 2005, Nature.

[76]  Jesse Stombaugh,et al.  Comprehensive survey and geometric classification of base triples in RNA structures , 2011, Nucleic acids research.

[77]  Quentin Vicens,et al.  Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection , 2011, Nucleic acids research.

[78]  David Loakes,et al.  Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release , 2010, Proceedings of the National Academy of Sciences.

[79]  Anna Marie Pyle,et al.  Crystal Structure of a Self-Spliced Group II Intron , 2008, Science.

[80]  N. Pace,et al.  Mapping metal-binding sites in the catalytic domain of bacterial RNase P RNA. , 2009, RNA.

[81]  A. Serganov,et al.  Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch , 2012, Nature Structural &Molecular Biology.

[82]  A. Serganov,et al.  Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch , 2009, Nature.

[83]  R. Sauer,et al.  The tmRNA system for translational surveillance and ribosome rescue. , 2007, Annual review of biochemistry.

[84]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[85]  T. Pan,et al.  Structure of ribonuclease P--a universal ribozyme. , 2006, Current opinion in structural biology.

[86]  S. Yokoyama,et al.  Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions , 2010, Nature.

[87]  R. Batey,et al.  B12 cofactors directly stabilize an mRNA regulatory switch , 2012, Nature.

[88]  A. Pyle,et al.  Crystal structure of a group II intron in the pre-catalytic state , 2012, Nature Structural &Molecular Biology.

[89]  N. Seeman,et al.  Three-Dimensional Tertiary Structure of Yeast Phenylalanine Transfer RNA , 1974, Science.

[90]  Shigeyuki Yokoyama,et al.  Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA , 2007, Proceedings of the National Academy of Sciences.

[91]  Stephen R Holbrook,et al.  RNA structure: the long and the short of it , 2005, Current Opinion in Structural Biology.

[92]  C. Oubridge,et al.  Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution , 2009, Nature.

[93]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[94]  K. Flaherty,et al.  Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix , 1994, Nature.

[95]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[96]  D. Lilley,et al.  A structural database for k-turn motifs in RNA. , 2010, RNA.