Accurate radiometry from space: an essential tool for climate studies

The Earth's climate is undoubtedly changing; however, the time scale, consequences and causal attribution remain the subject of significant debate and uncertainty. Detection of subtle indicators from a background of natural variability requires measurements over a time base of decades. This places severe demands on the instrumentation used, requiring measurements of sufficient accuracy and sensitivity that can allow reliable judgements to be made decades apart. The International System of Units (SI) and the network of National Metrology Institutes were developed to address such requirements. However, ensuring and maintaining SI traceability of sufficient accuracy in instruments orbiting the Earth presents a significant new challenge to the metrology community. This paper highlights some key measurands and applications driving the uncertainty demand of the climate community in the solar reflective domain, e.g. solar irradiances and reflectances/radiances of the Earth. It discusses how meeting these uncertainties facilitate significant improvement in the forecasting abilities of climate models. After discussing the current state of the art, it describes a new satellite mission, called TRUTHS, which enables, for the first time, high-accuracy SI traceability to be established in orbit. The direct use of a ‘primary standard’ and replication of the terrestrial traceability chain extends the SI into space, in effect realizing a ‘metrology laboratory in space’.

[1]  Nipa Phojanamongkolkij,et al.  Achieving Climate Change Absolute Accuracy in Orbit , 2013 .

[2]  Nigel P. Fox,et al.  Radiometry with cryogenic radiometers and semiconductor photodiodes , 1995 .

[3]  Stephen S. Leroy,et al.  Climate Signal Detection Times and Constraints on Climate Benchmark Accuracy Requirements , 2008 .

[4]  A. Pons,et al.  Absolute spectral irradiance scale in the 700-2400 nm spectral range. , 1990, Applied optics.

[5]  William J. Emery,et al.  Achieving satellite instrument calibration for climate change , 2007 .

[6]  B. Soden,et al.  An Assessment of Climate Feedbacks in Coupled Ocean–Atmosphere Models , 2006 .

[7]  Brian J. Soden,et al.  Quantifying Climate Feedbacks Using Radiative Kernels , 2008 .

[8]  C. Fröhlich,et al.  Accurate radiometers should measure the output of the Sun , 1999, Nature.

[9]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[10]  E. Ikonen,et al.  Characterization of germanium photodiodes and trap detector , 2006 .

[11]  Fortunat Joos,et al.  Solar activity during the last 1000 yr inferred from radionuclide records , 2007 .

[12]  Nigel P. Fox,et al.  Absolute Spectral Radiometric Determination of the Thermodynamic Temperatures of the Melting/Freezing Points of Gold, Silver and Aluminium , 1991 .

[13]  N. Fox,et al.  Cryogenic Solar Absolute Radiometer — CSAR , 1993 .

[14]  Nigel P. Fox,et al.  KEY COMPARISON: Final report on CCPR K1-a: Spectral irradiance from 250 nm to 2500 nm , 2006 .

[15]  J. Rice,et al.  2. Absolute Radiometers , 2005 .

[16]  Nigel P. Fox,et al.  Trap Detectors and their Properties , 1991 .

[17]  N. Weiss,et al.  For how long will the current grand maximum of solar activity persist? , 2008 .

[18]  Knut Ångström The Quantitative Determination of Radiant Heat by the Method of Electrical Compensation , 1894 .

[19]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[20]  Claus Fröhlich,et al.  Solar radiative output and its variability: evidence and mechanisms , 2004 .

[21]  E. Woolliams,et al.  Primary Radiometry for the Mise-en-Pratique for the Definition of the Kelvin: The Hybrid Method , 2011 .

[22]  C. Cromer,et al.  National Institute of Standards and Technology high-accuracy cryogenic radiometer. , 1996, Applied optics.

[23]  E. Zalewski,et al.  Silicon photodiode device with 100% external quantum efficiency. , 1983, Applied optics.

[24]  N. Fox,et al.  Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%. , 1990, Applied optics.

[25]  C. Fröhlich,et al.  History of solar radiometry and the world radiometric reference , 1991 .

[26]  Gary J. Rottman,et al.  The Spectral Irradiance Monitor: Scientific Requirements, Instrument Design, and Operation Modes , 2005 .

[27]  Hugh H. Kieffer,et al.  Photometric stability of the lunar surface , 1997 .

[28]  N. Fox,et al.  A mechanically cooled portable cryogenic radiometer , 1995 .

[29]  P Kärhä,et al.  Development of a detector-based absolute spectral irradiance scale in the 380-900-nm spectral range. , 1997, Applied optics.

[30]  Kevin E. Trenberth,et al.  Tracking Earth's Energy , 2010, Science.

[31]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[32]  C. Fröhlich,et al.  First Comparison of the Solar and an SI Radiometric Scale , 1991 .

[33]  E. Rozanov,et al.  A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing , 2011, 1102.4763.

[34]  Nigel P. Fox,et al.  Earth observation sensor calibration using a global instrumented and automated network of test sites (GIANTS) , 2001, Remote Sensing.

[35]  Nigel P. Fox,et al.  High-accuracy, infrared, spectral responsivity scale , 1998 .

[36]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[37]  H. Kieffer,et al.  The Spectral Irradiance of the Moon , 2005 .

[38]  H. Hofer,et al.  Lowest uncertainty direct comparison of a mechanically-cooled and a helium-cooled-cryogenic radiometer. , 2000 .

[39]  Howard W. Yoon,et al.  Radiometer standard for absolute responsivity calibrations from 950 nm to 1650 nm with 0.05% (k = 2) uncertainty , 2009 .

[40]  John J. Barnett,et al.  Traceable radiometry underpinning terrestrial- and helio-studies (TRUTHS) , 2003, SPIE Remote Sensing.

[41]  Nigel P. Fox,et al.  A Cryogenic Radiometer for Absolute Radiometric Measurements , 1985 .

[42]  Xavier Briottet,et al.  Results of POLDER in-flight calibration , 1999, IEEE Trans. Geosci. Remote. Sens..

[43]  J. D. Haigh,et al.  The role of stratospheric ozone in modulating the solar radiative forcing of climate , 1994, Nature.

[44]  J. Beer,et al.  Large variations in Holocene solar activity: Constraints from 10Be in the Greenland Ice Core Project ice core , 2006 .

[45]  C. Fröhlich,et al.  Solar Irradiance Variability Since 1978 , 2007 .

[46]  Bruce A. Wielicki,et al.  Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop , 2004 .

[47]  Judith Lean,et al.  Evolution of the Sun's Spectral Irradiance Since the Maunder Minimum , 2000 .

[48]  W. Schmutz,et al.  Third comparison of the World Radiometric Reference and the SI radiometric scale , 1995 .

[49]  Bruce A. Wielicki,et al.  Multi-instrument comparison of top-of-atmosphere reflected solar radiation , 2007 .

[50]  L. Boivin Properties of sphere radiometers suitable for high-accuracy cryogenic-radiometer-based calibrations in the near-infrared , 2000 .

[51]  Erkki Ikonen,et al.  Spectral irradiance comparison using a multi-wavelength filter radiometer , 2009 .

[52]  Jerald W. Harder,et al.  An influence of solar spectral variations on radiative forcing of climate , 2010, Nature.

[53]  N. Fox,et al.  Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry. , 1992, Applied optics.

[54]  F. Kurlbaum Notiz über eine Methode zur quantitativen Bestimmung strahlender Wärme , 1894 .

[55]  Jeffrey C. Hall,et al.  The Chromospheric Activity and Variability of Cycling and Flat Activity Solar-Analog Stars , 2004 .

[56]  J. Hartmann,et al.  High-temperature measurement techniques for the application in photometry, radiometry and thermometry , 2009 .

[57]  George P Eppeldauer,et al.  Facility for spectral irradiance and radiance responsivity calibrations using uniform sources. , 2006, Applied optics.

[58]  T. Quinn,et al.  A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C , 1985, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.