Restricted equivalence of paired epsilon–negative and mu–negative layers to a negative phase–velocity material (aliasleft–handed material)

Summary The time–harmonic electromagnetic responses of (a) a bilayer made of an epsilon–negative layer and a mu–negative layer, and (b) a single layer of a negative phase–velocity material are compared. Provided all layers are electrically thin, a restricted equivalence between (a) and (b) exists. The restricted equivalence depends on the linear polarization state and the transverse wavenumber. Implications for perfect lenses and parallel–plate waveguides are considered.

[1]  A. Alu,et al.  Mono-modal waveguides filled with a pair of parallel epsilon-negative (ENG) and mu-negative (MNG) metamaterial layers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[2]  R. Greegor,et al.  Experimental verification and simulation of negative index of refraction using Snell's law. , 2003, Physical review letters.

[3]  Akhlesh Lakhtakia,et al.  Orthorhombic Materials and Perfect Lenses , 2003 .

[4]  M. McCall,et al.  The negative index of refraction demystified , 2002, physics/0204067.

[5]  Brief Overview of Recent Developments on Negative Phase–Velocity Mediums (alias Left–Handed Materials) , 2002 .

[6]  A. Lakhtakia On Perfect Lenses and Nihility , 2001, physics/0112004.

[7]  John B. Pendry Electromagnetic materials enter the negative age , 2001 .

[8]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  A. Lakhtakia,et al.  Low-Frequency Electromagnetic Properties of an Alternating Stack of Thin Uniaxial Dielectric Laminae and Uniaxial Magnetic Laminae , 1991 .

[11]  C. M. Krowne,et al.  Fourier Transformed Finding Propagation Matrix Method of Characteristics of Complex Anisotropic Layered Media . , 1984 .

[12]  C. M. Krowne,et al.  Fourier Transformed Matrix Method of Finding Propagation Characteristics of Complex Anisotropic Layered Media , 1984 .

[13]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[14]  H. Hochstadt Differential Equations: A Modern Approach , 1964 .