A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes
暂无分享,去创建一个
[1] Oliver Pretzel. Error-Correcting Codes and Finite Fields , 1992 .
[2] N. Bourbaki. Commutative Algebra: Chapters 1-7 , 1989 .
[3] J. Neukirch. Algebraic Number Theory , 1999 .
[4] Gui Liang Feng,et al. A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.
[5] Amin Shokrollahi,et al. List Decoding of Algebraic-Geometric Codes , 1999, IEEE Trans. Inf. Theory.
[6] M. Sudan. Decoding Reed Solomon Codes beyond the Error-Correction Diameter , 1997 .
[7] Masao Kasahara,et al. A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..
[8] S. R. Czapor,et al. Computer Algebra , 1983, Computing Supplementa.
[9] Tom Høholdt,et al. Decoding Hermitian Codes with Sudan's Algorithm , 1999, AAECC.
[10] Madhu Sudan,et al. Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..
[11] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[12] G. Greuel,et al. SINGULAR version 1.2 User Manual , 1998 .
[13] J. H. Lint,et al. Algebraic-geometric codes , 1992 .
[14] J. Calmet. Computer Algebra , 1982 .
[15] V. Olshevsky. A Displacement Structure Approach to List Decoding of Reed-Solomon and Algebraic-Geometric Codes ∗ , 2000 .
[16] Amin Shokrollahi,et al. A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.
[17] Henning Stichtenoth,et al. Algebraic function fields and codes , 1993, Universitext.
[18] Ruud Pellikaan,et al. Which linear codes are algebraic-geometric? , 1991, IEEE Trans. Inf. Theory.
[19] Venkatesan Guruswami,et al. Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.
[20] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[21] James L. Massey,et al. Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.
[22] Jean Louis Dornstetter. On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.