A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes

This article presents an algorithmic improvement to Sudan's (see J. Complexity, vol.13, p.180-93, 1997) list-decoding algorithm for Reed-Solomon codes and its generalization to algebraic-geometric codes from Shokrollahi and Wasserman (see ibid., vol.45, p.432-37, 1999). Instead of completely factoring the interpolation polynomial over the function field of the curve, we compute sufficiently many coefficients of a Hensel development to reconstruct the functions that correspond to codewords. We prove that these Hensel developments can be found efficiently using Newton's method. We also describe the algorithm in the special case of Reed-Solomon codes.

[1]  Oliver Pretzel Error-Correcting Codes and Finite Fields , 1992 .

[2]  N. Bourbaki Commutative Algebra: Chapters 1-7 , 1989 .

[3]  J. Neukirch Algebraic Number Theory , 1999 .

[4]  Gui Liang Feng,et al.  A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes , 1991, IEEE Trans. Inf. Theory.

[5]  Amin Shokrollahi,et al.  List Decoding of Algebraic-Geometric Codes , 1999, IEEE Trans. Inf. Theory.

[6]  M. Sudan Decoding Reed Solomon Codes beyond the Error-Correction Diameter , 1997 .

[7]  Masao Kasahara,et al.  A Method for Solving Key Equation for Decoding Goppa Codes , 1975, Inf. Control..

[8]  S. R. Czapor,et al.  Computer Algebra , 1983, Computing Supplementa.

[9]  Tom Høholdt,et al.  Decoding Hermitian Codes with Sudan's Algorithm , 1999, AAECC.

[10]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[11]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[12]  G. Greuel,et al.  SINGULAR version 1.2 User Manual , 1998 .

[13]  J. H. Lint,et al.  Algebraic-geometric codes , 1992 .

[14]  J. Calmet Computer Algebra , 1982 .

[15]  V. Olshevsky A Displacement Structure Approach to List Decoding of Reed-Solomon and Algebraic-Geometric Codes ∗ , 2000 .

[16]  Amin Shokrollahi,et al.  A displacement approach to efficient decoding of algebraic-geometric codes , 1999, STOC '99.

[17]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[18]  Ruud Pellikaan,et al.  Which linear codes are algebraic-geometric? , 1991, IEEE Trans. Inf. Theory.

[19]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[20]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[21]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[22]  Jean Louis Dornstetter On the equivalence between Berlekamp's and Euclid's algorithms , 1987, IEEE Trans. Inf. Theory.