IDENTIFICATION OF PHARMACEUTICAL CRYSTALLIZATION PROCESSES

Abstract A key bottleneck in the production of pharmaceuticals is in the formation of crystals from solution. The control of the crystal size distribution can be critically important for efficient downstream operations such as filtration and drying, and product effectiveness (e.g., bioavailability, tablet stability). This paper provides an overview of recent developments in the identification of pharmaceutical crystallization processes. This includes descriptions of recent activities in sensor technologies, model identification, experimental design, and robustness analysis of pharmaceutical crystallization processes.

[1]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[2]  S. Finnie,et al.  Morphological and growth rate distributions of small self-nucleated paracetamol crystals grown from pure aqueous solutions , 1999 .

[3]  S. H. Chung,et al.  Worst-case performance analysis of optimal batch control trajectories , 1999, 1999 European Control Conference (ECC).

[4]  J. Mullin,et al.  Expressions of supersaturation in crystallization studies , 1977 .

[5]  R. Braatz,et al.  Solution concentration prediction for pharmaceutical crystallization processes using robust chemometrics and ATR FTIR spectroscopy , 2002 .

[6]  F. Puel,et al.  On-line ATR FTIR measurement of supersaturation during solution crystallization processes. Calibration and applications on three solute/solvent systems , 2001 .

[7]  D. L. Ma,et al.  Optimal model-based experimental design in batch crystallization , 2000 .

[8]  Richard D. Braatz,et al.  Experimental design and inferential modeling in pharmaceutical crystallization , 2001 .

[9]  R. Braatz,et al.  Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy , 2001 .

[10]  Dilum D. Dunuwila,et al.  An investigation of the applicability of attenuated total reflection infrared spectroscopy for measurement of solubility and supersaturation of aqueous citric acid solutions , 1994 .

[11]  D. L. Ma,et al.  IDENTIFICATION OF KINETIC PARAMETERS IN MULTIDIMENSIONAL CRYSTALLIZATION PROCESSES , 2002 .

[12]  J. Klein,et al.  Model identification of batch cooling crystallizations through calorimetry and image analysis , 1997 .

[13]  D. L. Ma,et al.  Simulation and New Sensor Technologies for Industrial Crystallization , 2002 .

[14]  R. Braatz,et al.  A robust chemometrics approach to inferential estimation of supersaturation , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[15]  S. Rohani,et al.  Determination of Particle Size Distribution by Par-Tec® 100: Modeling and Experimental Results , 1998 .

[16]  A. Myerson,et al.  Metastable solution thermodynamic properties and crystal growth kinetics , 1996 .

[17]  M. Mazzotti,et al.  Modeling and Experimental Analysis of PSD Measurements through FBRM , 2000 .

[18]  David L. Ma,et al.  Worst-case analysis of finite-time control policies , 2001, IEEE Trans. Control. Syst. Technol..

[19]  F. Puel,et al.  Habit Transient Analysis in Industrial Crystallization Using Two Dimensional Crystal Sizing Technique , 1997 .

[20]  Dilum D. Dunuwila,et al.  ATR FTIR spectroscopy for in situ measurement of supersaturation , 1997 .

[21]  James B. Rawlings,et al.  Model identification and control strategies for batch cooling crystallizers , 1994 .

[22]  D. Bonvin,et al.  INFERRING CONCENTRATIONS ON-LINE FROM NEAR-INFRARED SPECTRA: NONLINEAR CALIBRATION VIA MID-INFRARED MEASUREMENTS , 1996 .

[23]  R. Braatz,et al.  Paracetamol Crystallization Using Laser Backscattering and ATR-FTIR Spectroscopy: Metastability, Agglomeration, and Control , 2002 .

[24]  A. Pacek,et al.  Video technique for measuring dynamics of liquid‐liquid dispersion during phase inversion , 1994 .

[25]  J. Klein,et al.  Particle Size Determination by Laser Reflection: Methodology and problems , 1996 .