Exponential mixing of frame flows for convex cocompact hyperbolic manifolds

The aim of this paper is to establish exponential mixing of frame flows for convex cocompact hyperbolic manifolds of arbitrary dimension with respect to the Bowen–Margulis–Sullivan measure. Some immediate applications include an asymptotic formula for matrix coefficients with an exponential error term as well as the exponential equidistribution of holonomy of closed geodesics. The main technical result is a spectral bound on transfer operators twisted by holonomy, which we obtain by building on Dolgopyat's method.

[1]  BY Frédéricnaud EXPANDING MAPS ON CANTOR SETS AND ANALYTIC CONTINUATION OF ZETA FUNCTIONS , 2005 .

[2]  Alex Kontorovich,et al.  Apollonian Circle Packings and Closed Horospheres on Hyperbolic 3-manifolds , 2022 .

[3]  J. Mather,et al.  Characterization of Anosov Diffeomorphisms , 1968 .

[4]  G. Margulis,et al.  Closed geodesics and holonomies for Kleinian manifolds , 2014, Geometric and Functional Analysis.

[5]  R. Bowen,et al.  MARKOV PARTITIONS FOR AXIOM A DIFFEOMORPHISMS. , 1970 .

[6]  CE Cahier FR , 2020, Catalysis from A to Z.

[7]  BOWEN{MARGULIS AND PATTERSON MEASURES ON NEGATIVELY CURVED COMPACT MANIFOLDS , 2007 .

[8]  Michael Magee,et al.  Expanding maps and continued fractions , 2014, 1412.4284.

[9]  Shigeo Sasaki,et al.  ON THE DIFFERENTIAL GEOMETRY OF TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS II , 1958 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[12]  A. Gorodnik,et al.  Exponential mixing of nilmanifold automorphisms , 2012, 1210.2271.

[13]  B. M. Fulk MATH , 1992 .

[14]  Tosio Kato Perturbation theory for linear operators , 1966 .

[15]  N. Chernov Chapter 4 Invariant measures for hyperbolic dynamical systems , 2002 .

[16]  D. Dolgopyat On decay of correlations in Anosov flows , 1998 .

[17]  R. Phillips,et al.  The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces , 1982 .

[18]  S. Patterson The limit set of a Fuchsian group , 1976 .

[19]  S. Tikhomirov,et al.  Nonlocally maximal and premaximal hyperbolic sets , 2015, 1510.05933.

[20]  Limit sets of geometrically finite free Kleinian groups , 1984 .

[21]  Brian H. Bowditch,et al.  Geometrical finiteness with variable negative curvature , 1995 .

[22]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[23]  OH Hee SHRINKING TARGETS FOR THE GEODESIC FLOW ON GEOMETRICALLY FINITE HYPERBOLIC MANIFOLDS , 2021 .

[24]  P. Sarnak,et al.  Sector Estimates for Hyperbolic Isometries , 2010, 1001.4541.

[25]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[26]  David Ruelle,et al.  The thermodynamic formalism for expanding maps , 1989 .

[27]  Marina Ratner,et al.  The rate of mixing for geodesic and horocycle flows , 1987, Ergodic Theory and Dynamical Systems.

[28]  L. Stoyanov Spectra of Ruelle transfer operators for Axiom A flows , 2008, 0810.1126.

[29]  A. Mohammadi,et al.  Matrix coefficients, counting and primes for orbits of geometrically finite groups , 2012, Journal of the European Mathematical Society.

[30]  C. McMullen,et al.  Mixing, counting, and equidistribution in Lie groups , 1993 .

[31]  Calvin C. Moore,et al.  Exponential Decay of Correlation Coefficients for Geodesic Flows , 1987 .

[32]  SYMBOLIC DYNAMICS FOR SMALE FLOWS , 1987 .

[33]  Min Ho Lee,et al.  Effective Circle Count for Apollonian Packings and Closed Horospheres , 2012, 1202.1067.

[34]  P. Sarnak,et al.  Equidistribution of holonomy about closed geodesics , 1999 .

[35]  R. Melrose,et al.  Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature , 1987 .

[36]  Samuel C. Edwards,et al.  Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds , 2021, Duke Mathematical Journal.

[37]  P. Sarnak,et al.  Density of integer points on affine homogeneous varieties , 1993 .

[38]  권경학,et al.  4 , 1906, Undiscovered Country.

[39]  Kevin K. Lin,et al.  The Selberg Zeta Function for Convex Co-Compact Schottky Groups , 2002, math/0211041.

[40]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[41]  M. Ratner Markov partitions for anosov flows onn-dimensional manifolds , 1973 .

[42]  Brian S Mangum,et al.  Incompressible surfaces and pseudo-Anosov flows , 1998 .

[43]  Brian H. Bowditch,et al.  Geometrical Finiteness for Hyperbolic Groups , 1993 .

[44]  M. Shub,et al.  PERIODIC POINTS AND MEASURES FOR AXIOM A DIFFEOMORPHISMS , 2010 .

[45]  Dusa McDuff,et al.  HARMONIC ANALYSIS ON SEMI‐SIMPLE LIE GROUPS—I , 1974 .

[46]  Garth Warner,et al.  Harmonic Analysis on Semi-Simple Lie Groups II , 1972 .

[47]  C. Caramanis What is ergodic theory , 1963 .

[48]  Dubi Kelmer,et al.  Exponential mixing and shrinking targets for geodesic flow on geometrically finite hyperbolic manifolds , 2018, 1812.05251.

[49]  V. Kaimanovich Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds , 1990 .

[50]  Kam-ping Mok On the differential geometry of frame bundles of Riemannian manifolds. , 1978 .

[51]  Alex Gamburd,et al.  On the spectral gap for infinite index “congruence” subgroups of SL2(Z) , 2002 .

[52]  H. Oh,et al.  Prime number theorems and holonomies for hyperbolic rational maps , 2016, 1603.00107.

[53]  Fr'ed'eric Naud,et al.  Expanding maps on Cantor sets and analytic continuation of zeta functions , 2005 .

[54]  Michael Magee Quantitative spectral gap for thin groups of hyperbolic isometries , 2011, 1112.2004.

[55]  D. Rudolph Ergodic behaviour of Sullivan's geometric measure on a geometrically finite hyperbolic manifold , 1982, Ergodic Theory and Dynamical Systems.

[56]  D. Kleinbock,et al.  BOUNDED ORBITS OF NONQUASIUNIPOTENT FLOWS ON HOMOGENEOUS SPACES , 2002 .

[57]  M. Brin Ergodic Theory of Frame Flows , 1982 .

[58]  S. Lalley Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits , 1989 .

[59]  D. Dolgopyat On mixing properties of compact group extensions of hyperbolic systems , 2002 .

[60]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[61]  R. Howe,et al.  Asymptotic properties of unitary representations , 1979 .

[62]  H. Oh Harmonic analysis, Ergodic theory and Counting for thin groups , 2012, 1208.4148.

[63]  M. Brin,et al.  PARTIALLY HYPERBOLIC DYNAMICAL SYSTEMS , 1974 .

[64]  S. Patterson On a lattice-point problem in hyperbolic space and related questions in spectral theory , 1988 .

[65]  Michael Magee,et al.  Uniform congruence counting for Schottky semigroups in SL2(𝐙) , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[66]  H. Oh,et al.  Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of $\operatorname{SL}_2(\mathbb{Z})$ , 2014, 1410.4401.

[67]  F. Jotzo,et al.  Double counting and the Paris Agreement rulebook , 2019, Science.

[68]  DYN , 2019, The International Encyclopedia of Surrealism.

[69]  Y. Benoist,et al.  Effective equidistribution of S-integral points on symmetric varieties , 2007, 0706.1621.

[70]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[71]  M. Babillot On the mixing property for hyperbolic systems , 2002 .

[72]  N. Shah,et al.  Equidistribution and counting for orbits of geometrically finite hyperbolic groups , 2010, 1001.2096.

[73]  Dale Winter Mixing of frame flow for rank one locally symmetric spaces and measure classification , 2014, 1403.2425.

[74]  D. Sullivan Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .

[75]  G. Margulis On Some Aspects of the Theory of Anosov Systems , 2004 .

[76]  M. Pollicott,et al.  Equilibrium States in Negative Curvature , 2012, 1211.6242.

[77]  V. Petkov,et al.  Ruelle transfer operators with two complex parameters and applications , 2016 .

[78]  W. Parry,et al.  Zeta functions and the periodic orbit structure of hyperbolic dynamics , 1990 .

[79]  Rufus Bowen,et al.  SYMBOLIC DYNAMICS FOR HYPERBOLIC FLOWS. , 1973 .

[80]  TUSHAR DAS,et al.  Extremality and dynamically defined measures, part II: Measures from conformal dynamical systems , 2015, Ergodic Theory and Dynamical Systems.

[81]  T. Roblin Ergodicité et équidistribution en courbure négative , 2003 .

[82]  OH Hee SPECTRAL GAP AND EXPONENTIAL MIXING ON GEOMETRICALLY FINITE HYPERBOLIC MANIFOLDS , 2019 .

[83]  Artur Avila,et al.  Exponential mixing for the Teichmüller flow , 2005 .

[84]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .

[85]  L. Stoyanov On the Ruelle-Perron-Frobenius theorem , 2005 .

[86]  D. Borthwick Spectral theory of infinite-area hyperbolic surfaces , 2007 .

[87]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[88]  Dubi Kelmer,et al.  Shrinking targets for the geodesic flow on geometrically finite hyperbolic manifolds , 2021, Journal of Modern Dynamics.

[89]  C. Deng 1a , 2020, ioChem-BD Computational Chemistry Datasets.

[90]  D. Sullivan The density at infinity of a discrete group of hyperbolic motions , 1979 .