Even linear simple matrix languages: formal language properties and grammatical inference

We show that so-called deterministic even linear simple matrix grammars can be inferred in polynomial time using the query-based learner-teacher model (minimally adequate teacher-learning model) proposed by Angluin (Inform. and Comput. 75 (1987) 87) for learning deterministic regular languages. In this way, we extend the class of efficiently learnable languages beyond both the even linear languages and the even equal matrix languages (Pattern Recognition 21 (1988) 55; Proc. 2nd Internat. Colloq. on Grammatical Inference (ICGI-94): Grammatical Inference and Applications, Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence, vol. 862, Springer, Berlin, 1994, p. 38; Inform. Process. Lett. 28 (1988) 193; Technical Report IIAS-RR-93-6E, Fujitsu Laboratories, 1992; Parallel Image Analysis, ICPIA'92, Lecture Notes in Computer Science, vol. 652, Springer, Berlin, 1992, p. 274; Inform. and Comput. 123 (1995) 138; Algorithmic Learning for Knowledge-Based Systems, Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence, Springer, Berlin, 1995, p. 317). Moreover, we investigate formal language properties of even linear simple matrix languages and related language classes. More precisely, we discuss characterizations, (proper) inclusion relations, closure properties and decidability questions. This way, we also show that, in a certain sense, the idea of iterating the control language approach for learning purposes, as undertook by Takada (1995), could be seen as a special case of using deterministic even linear simple matrix grammars as basic and uniform learning target.

[1]  Nabil A. Khabbaz Control Sets on Linear Grammars , 1974, Inf. Control..

[2]  Takashi Yokomori,et al.  Learning non-deterministic finite automata from queries and counterexamples , 1994, Machine Intelligence 13.

[3]  Enrique Vidal,et al.  Inference of k-Testable Languages in the Strict Sense and Application to Syntactic Pattern Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  G. R. Putzolu,et al.  Generalizations of Regular Events , 1965, Inf. Control..

[5]  Yuji Takada Grammatical Interface for Even Linear Languages Based on Control Sets , 1988, Inf. Process. Lett..

[6]  Anca Pascu,et al.  A Homomorphic Representation of Simple Matrix Languages , 1977, Inf. Control..

[7]  Henning Fernau Even Linear Simple Matrix Languages: Formal Language Aspects , 2001, DMTCS.

[8]  Klaus W. Wagner,et al.  On the Intersection of the Class of Linear Context-Free Languages and the Class of Single-Reset Languages , 1986, Inf. Process. Lett..

[9]  Grzegorz Rozenberg A Note on Universal Grammars , 1977, Inf. Control..

[10]  Henning Fernau Efficient Learning of Some Linear Matrix Languages , 1999, COCOON.

[11]  Henning Fernau,et al.  Permutations and Control Sets for Learning Non-regular Language Families , 2000, ICGI.

[12]  Stuart M. Shieber,et al.  Evidence against the context-freeness of natural language , 1985 .

[13]  Tao Jiang,et al.  Learning regular languages from counterexamples , 1988, COLT '88.

[14]  Osamu Watanabe,et al.  An optimal parallel algorithm for learning DFA , 1994, COLT '94.

[15]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[16]  Rani Siromoney,et al.  Unambiguous Equal Matrix Languages , 1972, Inf. Control..

[17]  Gheorghe Paun Linear Simple Matrix Languages , 1978, J. Inf. Process. Cybern..

[18]  David J. Weir A Geometric Hierarchy Beyond Context-Free Languages , 1992, Theor. Comput. Sci..

[19]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[20]  Cristian S. Calude,et al.  Discrete Mathematics and Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[21]  Francesco Bergadano,et al.  Learning behaviors of automata from shortest counterexamples , 1995, EuroCOLT.

[22]  Grzegorz Rozenberg,et al.  Handbook of formal languages, vol. 1: word, language, grammar , 1997 .

[23]  Nabil A. Khabbaz A Geometric Hierarchy of Languages , 1974, J. Comput. Syst. Sci..

[24]  Piotr Berman,et al.  Learning one-counter languages in polynomial time , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[25]  Sadaki Hirose,et al.  Left Universal Context-Free Grammars and homomorphic Characterizations of Languages , 1981, Inf. Control..

[26]  Takashi Yokomori On Learning Systolic Languages , 1992, ALT.

[27]  Ronald L. Rivest,et al.  Inference of finite automata using homing sequences , 1989, STOC '89.

[28]  G. Nagaraja,et al.  Inference of even linear grammars and its application to picture description languages , 1988, Pattern Recognit..

[29]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[30]  Nader H. Bshouty,et al.  On the exact learning of formulas in parallel , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[31]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[32]  Yuji Takada,et al.  A Hierarchy of Language Families Learnable by Regular Language Learning , 1995, Inf. Comput..

[33]  Erkki Mäkinen,et al.  A Note on the Grammatical Inference Problem for Even Linear Languages , 1996, Fundam. Informaticae.

[34]  Arnold L. Rosenberg,et al.  A Machine Realization of the Linear Context-Free Languages , 1967, Inf. Control..

[35]  E. Mark Gold,et al.  Language Identification in the Limit , 1967, Inf. Control..

[36]  Yuji Takada Learning Even Equal Matrix Languages Based on Control Sets , 1992, ICPIA.

[37]  Takumi Kasai,et al.  A Universal Context-Free Grammar , 1975, Inf. Control..

[38]  Sheila A. Greibach,et al.  One Way Finite Visit Automata , 1978, Theor. Comput. Sci..

[39]  Takeshi Koshiba,et al.  Learning Deterministic even Linear Languages From Positive Examples , 1997, Theor. Comput. Sci..

[40]  Alexandru Mateescu Special Families of Matrix Languages and Decidable Problems , 1991, Acta Cybern..

[41]  Nader H. Bshouty,et al.  Asking questions to minimize errors , 1993, COLT '93.

[42]  Koichi Furukawa,et al.  Machine Intelligence 13, Machine Intelligence and Inductive Learning, Loch Lomond, UK, 1992 , 1994, Machine Intelligence 13.

[43]  Dana Angluin,et al.  When won't membership queries help? , 1991, STOC '91.

[44]  高田 裕志 Algorithmic learning theory of formal languages and its applications , 1993 .

[45]  S. Ginsburg,et al.  Finite-Turn Pushdown Automata , 1966 .

[46]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[47]  Rani Siromoney,et al.  On Equal Matrix Languages , 1969, Inf. Control..

[48]  Osamu Watanabe,et al.  An optimal parallel algorithm for learning DFA , 1994, COLT '94.

[49]  Hans Ulrich Simon,et al.  Learning deterministic finite automata from smallest counterexamples , 1998, SODA '98.

[50]  J. A. Brzozowski,et al.  Regular-Like Expressions for Some Irregular Languages , 1968, SWAT.

[51]  Oscar H. Ibarra,et al.  Simple Matrix Languages , 1970, Inf. Control..

[52]  Sheila A. Greibach Comments on Universal and Left Universal Grammars, Context-Sensitive Languages, and Context-Free Grammar Forms , 1978, Inf. Control..

[53]  Dana Angluin Negative results for equivalence queries , 1990, Mach. Learn..

[54]  G. R. Putzolu,et al.  On a Family of Linear Grammars , 1964, Inf. Control..

[55]  Takashi Yokomori Learning two-tape automata from queries and counterexamples , 1993, COLT '93.

[56]  Sheila A. Greibach,et al.  Comparisons and Reset Machines (Preliminary Report) , 1978, ICALP.

[57]  Yuji Takada Learning Semilinear Sets from Examples and via Queries , 1992, Theor. Comput. Sci..

[58]  Carlos Martín-Vide,et al.  Natural Language Understanding: a New Challenge for Grammar Systems , 1996, Acta Cybern..

[59]  Amiram Yehudai,et al.  The Decidability of Equivalence for a Family of Linear Grammars , 1980, Inf. Control..

[60]  José M. Sempere,et al.  A Characterization of Even Linear Languages and its Application to the Learning Problem , 1994, ICGI.

[61]  Wilfried Brauer,et al.  Non-Deterministic Two-Tape Automata are More Powerful Then Deterministic Ones , 1985, STACS.