High spectral resolution Fourier transform imaging spectroscopy in a Michelson interferometer with homodyne laser metrology control

High spectral resolution Fourier transform imaging spectroscopy has been demonstrated at the Lockheed Martin Advanced Technology Center. A testbed was built using a Michelson interferometer with a two-stage end-mirror control system. Homodyne laser metrology was used to sense relative tip, tilt and piston in the interferometer, and a 3-degree of freedom fast steering mirror in conjunction with a linear actuator stage provided sub-nanometer actuation control over 20 millimeters of piston range. The range of piston over which signal was present allowed for spectral resolution at the nanometer level in the visible / near infrared (VNIR) band for every pixel in the reconstructed image.