Role of Synthesis in Evolution of Catalyst: Bulk, Dispersed to Single Atom

[1]  A. K. Patra,et al.  Immobilization of crystalline Fe2O3 nanoparticles over SiO2 for creating an active and stable catalyst: A demand for high temperature sulfuric acid decomposition , 2021 .

[2]  K. Polychronopoulou,et al.  Synthesis and performance evaluation of hydrocracking catalysts: A review , 2020, Journal of Industrial and Engineering Chemistry.

[3]  K. Shah,et al.  Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis , 2020 .

[4]  Xiao-Jun Lv,et al.  Single-Atom Catalysts for Photocatalytic Reactions , 2019, ACS Sustainable Chemistry & Engineering.

[5]  Yanjie Hu,et al.  Aerosol Spray Pyrolysis Synthesis of Porous Anatase TiO2 Microspheres with Tailored Photocatalytic Activity , 2018, Acta Metallurgica Sinica (English Letters).

[6]  B. Louis,et al.  An Overview on Zeolite Shaping Technology and Solutions to Overcome Diffusion Limitations , 2018 .

[7]  A. Banerjee,et al.  Catalytic properties of dispersed iron oxides Fe 2 O 3 /MO 2 (M = Zr, Ce, Ti and Si) for sulfuric acid decomposition reaction: Role of support , 2018 .

[8]  S. Bharadwaj,et al.  Nanostructured Fe2O3 dispersed on SiO2 as catalyst for high temperature sulfuric acid decomposition—Structural and morphological modifications on catalytic use and relevance of Fe2O3-SiO2 interactions , 2017 .

[9]  Jacques C. Vedrine,et al.  Heterogeneous Catalysis on Metal Oxides , 2017 .

[10]  M. Schmal Heterogeneous Catalysis and its Industrial Applications , 2016 .

[11]  S. Ehrman,et al.  A comprehensive study on sunlight driven photocatalytic hydrogen generation using low cost nanocrystalline Cu-Ti oxides , 2016 .

[12]  Michelle H. Wiebenga,et al.  Thermally stable single-atom platinum-on-ceria catalysts via atom trapping , 2016, Science.

[13]  L. Gu,et al.  Photochemical route for synthesizing atomically dispersed palladium catalysts , 2016, Science.

[14]  P. D. de Jongh,et al.  Recent developments in the synthesis of supported catalysts. , 2015, Chemical reviews.

[15]  Sivakumar R. Challa,et al.  Trapping of Mobile Pt Species by PdO Nanoparticles under Oxidizing Conditions. , 2014, The journal of physical chemistry letters.

[16]  K. Sopian,et al.  Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells , 2014 .

[17]  H. Jung,et al.  Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill , 2013 .

[18]  G. M. Stocks,et al.  CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. , 2013, Journal of the American Chemical Society.

[19]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[20]  R. Li,et al.  Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition , 2013, Scientific Reports.

[21]  R. V. Chaudhari,et al.  Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. , 2013, ACS nano.

[22]  Jan M. L. Martin,et al.  “Turning Over” Definitions in Catalytic Cycles , 2012 .

[23]  P. K. Sinha,et al.  Catalytic activities of Fe2O3 and chromium doped Fe2O3 for sulfuric acid decomposition reaction in an integrated boiler, preheater, and catalytic decomposer , 2012 .

[24]  N. Browning,et al.  Imaging isolated gold atom catalytic sites in zeolite NaY. , 2012, Angewandte Chemie.

[25]  Xiaofeng Yang,et al.  Single-atom catalysis of CO oxidation using Pt1/FeOx. , 2011, Nature chemistry.

[26]  Younan Xia,et al.  Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? , 2011, Journal of the American Chemical Society.

[27]  S. Bharadwaj,et al.  Catalytic activities of cobalt, nickel and copper ferrospinels for sulfuric acid decomposition: The , 2011 .

[28]  S. Bharadwaj,et al.  Modified surface and bulk properties of Fe-substituted lanthanum titanates enhances catalytic activity for CO + N2O reaction , 2011 .

[29]  S. Bharadwaj,et al.  Mechanism of CO + N2O reaction via transient CO3(2-) species over crystalline Fe-substituted lanthanum titanates. , 2010, The journal of physical chemistry. B.

[30]  Jun Li,et al.  Chemistry on single atoms: spontaneous hydrogen production from reactions of transition-metal atoms with methanol at cryogenic temperatures. , 2010, Angewandte Chemie.

[31]  Tianpin Wu,et al.  Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces , 2009, Science.

[32]  Nariaki Sakaba,et al.  Thermochemical water-splitting cycle using iodine and sulfur , 2009 .

[33]  B. Ahn,et al.  Catalytic Decomposition of SO3 over Pt/BaSO4 Materials in Sulfur−Iodine Cycle for Hydrogen Production , 2009 .

[34]  G. Somorjai,et al.  Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. , 2008, Chemical Society reviews.

[35]  Benjamin J. Glasser,et al.  A parametric investigation of impregnation and drying of supported catalysts , 2008 .

[36]  A. K. Tyagi,et al.  Crystal structure of thorium metavanadate (Th(VO3)4) , 2008 .

[37]  Daniel M. Ginosar,et al.  Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles , 2008 .

[38]  J. Geus,et al.  Preparation of Supported Catalysts by Deposition–Precipitation , 2008 .

[39]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[40]  S. Rashkeev,et al.  Catalytic Activity of Supported Metal Particles for Sulfuric Acid Decomposition Reaction , 2007 .

[41]  Anirudh Singh,et al.  Recent Trends in Metal Alkoxide Chemistry , 2007 .

[42]  Daniel M. Ginosar,et al.  Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles , 2007 .

[43]  B. N. Wani,et al.  The role of substitution-induced micro-structural defects on the redox behavior and catalytic activity of LaxTh1-x(VO3-δ)4 mixed oxide catalysts , 2006 .

[44]  S. Brutti,et al.  Catalytic thermal decomposition of sulphuric acid in sulphur–iodine cycle for hydrogen production , 2006 .

[45]  B. Sreedhar,et al.  Catalytic and redox properties of nano-sized La0.8Sr0.2Mn1−xFexO3−δ mixed oxides synthesized by different routes , 2006 .

[46]  J. Hagen Industrial Catalysis: A Practical Approach , 2005 .

[47]  James A. Anderson,et al.  Supported metals in catalysis , 2005 .

[48]  B. N. Wani,et al.  Effect of La substitution on thermal stability of ThV2O7 , 2005 .

[49]  B. N. Wani,et al.  Role of substitution in catalytic activity of La–Th–V–O mixed oxides for the reaction of methanol , 2004 .

[50]  T. Okamoto,et al.  Self-regeneration of a Pd-perovskite catalyst for automotive emissions control , 2002, Nature.

[51]  N. Rösch,et al.  Acetylene cyclotrimerization on supported size-selected Pd-n clusters (1 <= n <= 30): one atom is enough! , 2000 .

[52]  A. Sánchez,et al.  Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts , 1999 .

[53]  K. Gonsalves,et al.  Nanotechnology: Molecularly Designed Materials , 1996 .

[54]  J. A. Schwarz,et al.  Methods for Preparation of Catalytic Materials , 1995 .

[55]  M. S. El-shall,et al.  Synthesis of Nanoscale Metal Oxide Particles Using Laser Vaporization/Condensation in a Diffusion Cloud Chamber , 1994 .

[56]  G. Messing,et al.  Ceramic Powder Synthesis by Spray Pyrolysis , 1993 .

[57]  V. Sokolovskii Principles of Oxidative Catalysis on Solid Oxides , 1990 .

[58]  T. Kodas Generation of complex Metal Oxides by Aerosol Processes: Superconducting ceramic particles and films , 1989 .

[59]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[60]  吳在熙 CERAMICS , 1986, Arkansas Made, Volume 1.

[61]  P. V. Geenen,et al.  A study of the vapor-phase epoxidation of propylene and ethylene on silver and silver-gold alloy catalysts , 1982 .

[62]  E. Ruckenstein,et al.  Selective oxidation of hydrocarbons on composite oxides , 1980 .

[63]  M. Dokiya,et al.  The Study of Thermochemical Hydrogen Preparation. III. An Oxygen-evolving Step through the Thermal Splitting of Sulfuric Acid , 1977 .

[64]  R. Behm,et al.  Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2 , 2018 .

[65]  S. Bharadwaj,et al.  A comprehensive study on Pt/Al2O3 granular catalyst used for sulfuric acid decomposition step in sulfur–iodine thermochemical cycle: Changes in catalyst structure, morphology and metal-support interaction , 2015 .

[66]  S. Bharadwaj,et al.  Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur–iodine cycle for hydrogen production , 2008 .

[67]  G. Leigh Haber-Bosch and Other Industrial Processes , 2004 .

[68]  A. Edelstein Nanoparticles from a Supersaturated Vapor , 1994 .