Biomechanical analysis of the accommodative apparatus in primates

Background:  The restoration of natural accommodation in the presbyopic and cataract affected eye is a subject of intense research effort. A new instrument has been developed to test the viability and efficacy of procedures and methods to restore accommodation ex vivo in animal or human eyes.

[1]  Holger Lubatschowski,et al.  fs-Laser induced elasticity changes to improve presbyopic lens accommodation , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[2]  B. Seitz,et al.  Zwei Jahre Erfahrung mit der akkommodativen Hinterkammerlinse 1 CU , 2002, Der Ophthalmologe.

[3]  Harvey J. Burd,et al.  Mechanics of accommodation of the human eye , 1999, Vision Research.

[4]  R F Fisher,et al.  The force of contraction of the human ciliary muscle during accommodation , 1977, The Journal of physiology.

[5]  Lisa A. Ostrin,et al.  Accommodative changes in lens diameter in rhesus monkeys. , 2006, Investigative ophthalmology & visual science.

[6]  Fabrice Manns,et al.  Evidence for posterior zonular fiber attachment on the anterior hyaloid membrane. , 2006, Investigative ophthalmology & visual science.

[7]  J. Parel,et al.  Accommodation Stress-Strain Relation in Human and Non-Human Primate Eyes Ex-Vivo , 2002 .

[8]  A. S. Vilupuru,et al.  The relationship between refractive and biometric changes during Edinger-Westphal stimulated accommodation in rhesus monkeys. , 2003, Experimental Eye Research.

[9]  J. Parel,et al.  Evaluation of porcine crystalline lenses in comparison with molded polymer gel lenses with an improved ex vivo accommodation simulator , 2005 .

[10]  Schachar Ra,et al.  Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. , 1992 .

[11]  V. Portney,et al.  A dual optic accommodating foldable intraocular lens , 2003, The British journal of ophthalmology.

[12]  Jean-Marie A Parel,et al.  Ex vivo accommodation simulator II: concept and preliminary results , 2004, SPIE BiOS.

[13]  Fabrice Manns,et al.  Modeling the performance of accommodating intraocular lenses , 2004, SPIE BiOS.

[14]  George Smith,et al.  The spherical aberration of the crystalline lens of the human eye , 2001, Vision Research.

[15]  W. D. O'Neill,et al.  Functional dependence of optical parameters on circumferential forces in the cat lens , 1976, Vision Research.

[16]  J L Semmlow,et al.  Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. , 1999, Investigative ophthalmology & visual science.

[17]  S. Mathews,et al.  Scleral expansion surgery does not restore accommodation in human presbyopia. , 1999, Ophthalmology.

[18]  Fabrice Manns,et al.  Optomechanical response of human and monkey lenses in a lens stretcher. , 2007, Investigative ophthalmology & visual science.

[19]  F. Manns,et al.  Dioptric Power vs Zonular Tension During Ex-vivo Simulated Accommodation of Primate Crystaline Lenses Before and After Refilling , 2003 .

[20]  R. Augusteyn Growth of the human eye lens , 2006, Molecular vision.

[21]  R. Schachar,et al.  Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation. , 1992, Annals of ophthalmology.

[22]  F. Roy,et al.  Mechanism of accommodation in primates. , 2001, Ophthalmology.

[23]  Wolfgang Drexler,et al.  Biometric investigation of changes in the anterior eye segment during accommodation , 1997, Vision Research.

[24]  F. Manns,et al.  Method For Ex-vivo Assessment Of Accommodation Forces , 2002 .

[25]  Alexander Duane,et al.  NORMAL VALUES OF THE ACCOMMODATION AT ALL AGES , 1912 .

[26]  R. Truscott,et al.  Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? , 2004, Molecular vision.