Conformational studies of nucleic acids: III. Empirical multiple correlation functions for nucleic acid torsion angles.

There are seven significantly variable torsion angles in each monomer unit of a polynucleotide. Because of this, it is computationally infeasible to consider the energetics of all conformations available to a nucleic acid without the use of simplifications. In this paper, we develop functions suggested by and regression fit to crystallographic data which allow three of these torsion angles, alpha (O3'-P-O5'-C5'), delta (C5'-C4'-C3'-O3') and epsilon (C4'-C3'-O3'-P), to be calculated as dependent variables of those remaining. Using these functions, the seven independent torsions are reduced to four, a reduction in complexity sufficient to allow an examination of the global conformational energetics of a nucleic acid for the remaining independent torsion angles. These functions are the first to quantitatively relate a dependent nucleic acid torsion angle to several different independent angles. In all three cases the data are fit reasonably well, and in one case, alpha, the fit is exceptionally good, lending support for the suitability of the functions in conformational searches. In addition, an examination of the most significant terms in each of the correlation functions allows insight into the physical basis for the correlations.

[1]  A. Rich,et al.  Molecular structure of the octamer d(G-G-C-C-G-G-C-C): modified A-DNA. , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Kim,et al.  Conformational studies of nucleic acids: IV. The conformational energetics of oligonucleotides: d(ApApApA) and ApApApA. , 1986, Journal of biomolecular structure & dynamics.

[3]  S. Kim,et al.  Conformational studies of nucleic acids. I. A rapid and direct method for generating furanose coordinates from the pseudorotation angle. , 1985, Journal of biomolecular structure & dynamics.

[4]  S. A. Salisbury,et al.  Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C). , 1983, Journal of molecular biology.

[5]  R. Dickerson,et al.  Helix geometry and hydration in an A-DNA tetramer: IC-C-G-G. , 1982, Journal of molecular biology.

[6]  Richard E. Dickerson,et al.  Structure of a B-DNA dodecamer at 16 K. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[7]  S. A. Salisbury,et al.  Structure of the deoxytetranucleotide d‐pApTpApT and a sequence‐dependent model for poly(dA‐dT) , 1982, Biopolymers.

[8]  W. Olson Computational studies of polynucleotide flexibility. , 1982, Nucleic acids research.

[9]  R. Dickerson,et al.  The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA , 1982, Nature.

[10]  S. A. Salisbury,et al.  Crystalline A-DNA: the X-ray analysis of the fragment d(G-G-T-A-T-A-C-C) , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  H R Drew,et al.  Structure of a B-DNA dodecamer: conformation and dynamics. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Rich,et al.  Left-handed double helical DNA: variations in the backbone conformation. , 1981, Science.

[13]  R. Dickerson,et al.  High-salt d(CpGpCpG), a left-handed Z′ DNA double helix , 1980, Nature.

[14]  Jacques H. van Boom,et al.  Molecular structure of a left-handed double helical DNA fragment at atomic resolution , 1979, Nature.

[15]  D. Vasilescu,et al.  Examen par la méthode des orbitales moléculaires des préférences conformationnelles intrinsèques du squelette des acides nucléiques , 1979 .

[16]  Michael Levitt,et al.  Refinement of Large Structures by Simultaneous Minimization of Energy and R Factor , 1978 .

[17]  J L Sussman,et al.  Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. , 1978, Journal of molecular biology.

[18]  J L Sussman,et al.  Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. , 1978, Journal of molecular biology.

[19]  O. Matsuoka,et al.  Conformational studies on polynucleotide chains. III. Intramolecular energy maps and comparison with experiments , 1978, Biopolymers.

[20]  D. Pérahia,et al.  A molecular orbital investigation of the conformation of transfer RNA. , 1977, Biochimica et biophysica acta.

[21]  George M. Church,et al.  A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters , 1977 .

[22]  M. Sundaralingam,et al.  Mechanisms of chain folding in nucleic acids. The (ω′,ω) plot and its correlation to the nucleotide geometry in yeast tRNAPhe1 , 1976 .

[23]  J. Konnert,et al.  A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units , 1976 .

[24]  N. Seeman,et al.  The general structure of transfer RNA molecules. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Pérahia,et al.  Molecular orbital calculations on the conformation of nucleic acids and their constituents. 3. Backbone structure of di- and polynucleotides. , 1972, Biochimica et biophysica acta.

[26]  W. Olson,et al.  Spatial configurations of polynucleotide chains. I. Steric interactions in polyribonucleotides: A virtual bond model , 1972, Biopolymers.

[27]  A. Lakshminarayanan,et al.  Stereochemistry of nucleic acids and polynucleotides. V. Conformational energy of a ribose‐phosphale unit , 1969 .

[28]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[29]  M. Sundaralingam,et al.  Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono‐, di‐, tri‐, tetraphosphates, nucleic acids and polynucleotides , 1969 .

[30]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[31]  B Pullman,et al.  Molecular orbital calculations on the conformation of amino acid residues of proteins. , 1974, Advances in protein chemistry.

[32]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[33]  Harold A. Scheraga,et al.  Calculations of Conformations of Polypeptides , 1968 .