Ch. 17. Extreme value theory, models and simulation

Publisher Summary Extreme value theory concerns the behavior of the extremes of a process or processes. The fundamentals of this probabilistic theory have been known since the beginning of the twentieth century. But the relevant statistical models emerged only much more recently. The aim of this chapter is to review the fundamentals, relevant statistical models and simulation schemes, and to note the various applications that the models have attracted. Most of the material presented is for independent and identically distributed observations. This chapter discusses the development of extreme value theory for nontrivial stochastic processes. Univariate extremes are traditionally modeled by the annual maximum method. The theoretical motivation for it comes from the well known extremal types theorem: details of this limit theorem, its variants and corresponding rate of convergence results. A major weakness of the annual maximum method is that it utilizes only the largest-order statistic and thus its use wastes a lot of data. The chapter describes two modeling approaches based, respectively, on the generalized Pareto distribution and the joint distribution of the r-largest-order statistics that make use of more of the data.

[1]  L. de Haan,et al.  On the maximal life span of humans. , 1994, Mathematical population studies.

[2]  Richard L. Smith Uniform rates of convergence in extreme-value theory , 1982, Advances in Applied Probability.

[3]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[4]  Asymptotic distribution of the maximum of n independent stochastic processes , 1993 .

[5]  James PickandsIII,et al.  An iterated logarithm law for the maximum in a stationary gaussian sequence , 1969 .

[6]  P. Erdös,et al.  A limit theorem for the maximum of normalized sums of independent random variables , 1956 .

[7]  J. Husler Extreme Values and High Boundary Crossings of Locally Stationary Gaussian Processes , 1990 .

[8]  Harry Joe,et al.  Families of min-stable multivariate exponential and multivariate extreme value distributions , 1990 .

[10]  N. L. Johnson,et al.  Breakthroughs in Statistics , 1992 .

[11]  L. de Haan,et al.  A CHARACTERIZATION OF MULTIDIMENSIONAL EXTREME -VALUE DISTRIBUTIONS , 1977 .

[12]  J. Hüsler Multivariate extreme values in stationary random sequences , 1990 .

[13]  Harry Joe,et al.  Bivariate Threshold Methods for Extremes , 1992 .

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[15]  Jonathan A. Tawn,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[16]  Subhabrata Chakraborti,et al.  Nonparametric Statistical Inference , 2011, International Encyclopedia of Statistical Science.

[17]  Stuart G. Coles,et al.  Regional Modelling of Extreme Storms Via Max‐Stable Processes , 1993 .

[18]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[19]  M. Berred K-record values and the extreme-value index , 1995 .

[20]  M.A.J. van Montfort,et al.  On testing a shape parameter in the presence of a location and a scale parameter , 1978 .

[21]  Extreme value theory for a thermal energy storage model , 1996 .

[22]  Samuel Kotz,et al.  Characterizations of Probability Distributions: A Unified Approach With an Emphasis on Exponential and Related Models , 1978 .

[23]  Shin-Ho Chung,et al.  Markov chain models, time series analysis and extreme value theory , 1996 .

[24]  Chris P. Tsokos,et al.  The asymptotic distribution of maxima in bivariate samples , 1973 .

[25]  L. Haan On regular variation and its application to the weak convergence of sample extremes , 1973 .

[26]  C. Goldie,et al.  A point-process approach to almost-sure behaviour of record values and order statistics , 1996, Advances in Applied Probability.

[27]  J. Bertoin Darling-Erdős theorems for normalized sums of i.i.d. variables close to a stable law , 1998 .

[28]  K. P. Hapuarachchi,et al.  Bayes estimation of the extreme-value reliability function , 1993 .

[29]  H. Finner,et al.  On the limit behaviour of the joint distribution function of order statistics , 1994 .

[30]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .

[31]  Janos Galambos,et al.  The Development of the Mathematical Theory of Extremes in the Past Half Century , 1995 .

[32]  Trevor J. Sweeting,et al.  On Domains of Uniform Local Attraction in Extreme Value Theory , 1985 .

[33]  Extreme Value Asymptotics for Multivariate Renewal Processes , 1996 .

[34]  Richard F. Serfozo,et al.  Extreme Values of Queue Lengths in M/G/1 and GI/M/1 Systems , 1988, Math. Oper. Res..

[35]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[36]  M. Ivette Gomes,et al.  Penultimate limiting forms in extreme value theory , 1984 .

[37]  Rates of convergence in multivariate extreme value theory , 1991 .

[38]  Asymptotic Distribution and Moments of Normal Extremes , 1981 .

[39]  S. Resnick,et al.  Second-Order Regular Variation and Rates of Convergence in Extreme-Value Theory , 1996 .

[40]  Sidney I. Resnick,et al.  Limit Theory for Moving Averages of Random Variables with Regularly Varying Tail Probabilities , 1985 .

[41]  Vladimir I. Piterbarg,et al.  Extreme values of the cyclostationary Gaussian random process , 1993 .

[42]  P. Embrechts,et al.  Estimates for the probability of ruin with special emphasis on the possibility of large claims , 1982 .

[43]  E. Omey Rates of Convergence for Densities in Extreme Value Theory , 1988 .

[44]  J. E. Minor,et al.  Reliability analysis of window glass failure pressure data , 1991 .

[45]  Madan L. Puri,et al.  Stochastic Processes and Related Topics. , 1976 .

[46]  A Note on Minimum Risk Point Estimation of the Shape Parameter of a Pareto Distribution , 1987 .

[47]  Daoji Shi,et al.  Moment Estimation for Multivariate Extreme Value Distribution in a Nested Logistic Model , 1999 .

[48]  M. Ivette Gomes,et al.  Two Test Statistics for Choice of Univariate Extreme Models , 1984 .

[49]  S. Nadarajah,et al.  Simulation of multivariate extreme values , 1999 .

[50]  V. Gusella ESTIMATION OF EXTREME WINDS FROM SHORT-TERM RECORDS , 1991 .

[51]  Ju¨rg Hu¨sler Extremes of a Gaussian Process and the Constant Hα , 1999 .

[52]  A. Karlqvist,et al.  Spatial interaction theory and planning models , 1978 .

[53]  N. Mole,et al.  A generalized pareto distribution model for high concentrations in short-range atmospheric dispersion , 1995 .

[54]  H. Rootzén Extreme Value Theory for Moving Average Processes , 1986 .

[55]  D. Nasri-Roudsari Extreme value theory of generalized order statistics , 1996 .

[56]  Harald Cramér,et al.  Collective risk theory , 1955 .

[57]  Masaaki Sibuya,et al.  Prediction of the Maximum Size in Wicksell's Corpuscle Problem , 1998 .

[58]  M. R. Leadbetter,et al.  Extreme value theory for continuous parameter stationary processes , 1982 .

[59]  A CONVERGENCE RATE IN EXTREME-VALUE THEORY , 1990 .

[60]  D. Zelterman A statistical distribution with an unbounded hazard function and its application to a theory from demography. , 1992, Biometrics.

[61]  S. Kotz,et al.  Some new approaches to probability distributions , 1980, Advances in Applied Probability.

[62]  D. Zelterman A Semiparametric Bootstrap Technique for Simulating Extreme Order Statistics , 1993 .

[63]  Jonathan P. Cohen The penultimate form of approximation to normal extremes , 1982, Advances in Applied Probability.

[64]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[65]  Richard L. Smith Extreme value theory based on the r largest annual events , 1986 .

[66]  S. Rachev,et al.  Rate of convergence in limit theorems for the max-scheme , 1985 .

[67]  D. D. Waal Goodness of fit of the generalized extreme value distribution based on the Kullback-Leibler information , 1996 .

[68]  George L. O'Brien,et al.  Extreme Values for Stationary and Markov Sequences , 1987 .

[69]  Gopinath Ramachandran,et al.  Properties of extreme order statistics and their application to fire protection and insurance problems , 1982 .

[70]  Michael S. Waterman,et al.  An extreme value theory for long head runs , 1986 .

[71]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[72]  Q. Shao Bounds and estimators of a basic constant in extreme value theory of Gaussian processes , 1996 .

[73]  K. Kaila,et al.  The first and third asymptotic distributions of extremes as applied to the seismic source regions of India and adjacent areas , 1997 .

[74]  M. Kratz,et al.  On the rate of convergence for extremes of mean square differentiable stationary normal processes , 1997, Journal of Applied Probability.

[75]  T. Yasuda,et al.  Occurrence Properties of Giant Freak Waves in Sea Area around Japan , 1997 .

[76]  Daryl J. Daley,et al.  Limit Laws for the Maximum of Weighted and Shifted I.I.D. Random Variables , 1984 .

[77]  The rate of convergence in law of the maximum of an exponential sample , 1979 .

[78]  J. Hüsler,et al.  Extremes and clustering of nonstationary max-AR(1) sequences , 1995 .

[79]  Jonathan P. Cohen Convergence rates for the ultimate and pentultimate approximations in extreme-value theory , 1982, Advances in Applied Probability.

[80]  Restricted domains of attraction of exp(−e−x) , 1987 .

[81]  T. Seki,et al.  Robust parameter-estimation using the bootstrap method for the 2-parameter Weibull distribution , 1996, IEEE Trans. Reliab..

[82]  Lajos Horváth On the tail behaviour of quantile processes , 1987 .

[83]  R. Lye,et al.  CATHODIC PROTECTION WITH REDUCED WAVE LOAD FEATURES FOR AN OFFSHORE STEEL JACKET , 1992 .

[84]  N. Mohan,et al.  Characterization of max domains of attraction of univariate p-max stable laws , 1991 .

[85]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[86]  N. Christopeit,et al.  Estimating parameters of an extreme value distribution by the method of moments , 1994 .

[87]  S. Nadarajah,et al.  A polynomial model for bivariate extreme value distributions , 1999 .

[88]  A. W. Kemp,et al.  Statistics for the Environment. , 1993 .

[89]  M. Suzuki,et al.  Seismic Risk Analysis Based on Strain Energy Accumulation in Focal Region , 1991, Journal of research of the National Institute of Standards and Technology.

[90]  H. Joe Multivariate models and dependence concepts , 1998 .

[91]  L. Devroye,et al.  Limit laws of Erdös-Rényi-Shepp type , 1987 .

[92]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[93]  A. Öztürk,et al.  A new test for the extreme value distribution , 1988 .

[94]  R. U. Leez Statistical analysis of corrosion failures of lead-sheathed cables , 1992 .

[95]  T. Hsing Extreme value theory for suprema of random variables with regularly varying tail probabilities , 1986 .

[96]  E. J. Gumbel,et al.  Some Analytical Properties of Bivariate Extremal Distributions , 1967 .

[97]  Limit properties for multivariate extreme values in sequences of independent, non-identically distributed random vectors , 1989 .

[98]  Walter Ledermann,et al.  Handbook of applicable mathematics , 1980 .

[99]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[100]  J. Teugels,et al.  Some Thoughts on Extreme Values , 1998 .

[101]  Charles M. Goldie,et al.  On convolution tails , 1982 .

[102]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[103]  P. Scarf Estimation for a four parameter generalized extreme value distribution , 1992 .

[104]  R. Perfekt Extreme Value Theory for a Class of Markov Chains with Values in ℝd , 1997, Advances in Applied Probability.

[105]  H. Cramér A Limit Theorem for the Maximum Values of Certain Stochastic Processes , 1965 .

[106]  Frank Marohn,et al.  Testing the Gumbel Hypothesis Via the Pot-Method , 1998 .

[107]  K. Turkman,et al.  Limit laws for the maxima of a class of quasi-stationary sequences , 1983, Journal of Applied Probability.

[108]  Teresa Alpuim An extremal markovian sequence , 1989, Journal of Applied Probability.

[109]  Jonathan A. Tawn,et al.  Statistics for Extreme Sea Currents , 1997 .

[110]  Rinya Takahashi,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1994, Journal of research of the National Institute of Standards and Technology.

[111]  Sidney I. Resnick,et al.  On regular variation of probability densities , 1987 .

[112]  L. de Haan,et al.  A Spectral Representation for Max-stable Processes , 1984 .

[113]  M. Chernick A Limit Theorem for the Maximum of Autoregressive Processes with Uniform Marginal Distributions , 1981 .

[114]  D. Iglehart Extreme Values in the GI/G/1 Queue , 1972 .

[115]  G. Geoffrey Booth,et al.  The behavior of extreme values in Germany's stock index futures: An application to intradaily margin setting , 1998 .

[116]  By K. Auinger Quasi goodness of fit tests for lifetime distributions , 1990 .

[117]  P. Sen,et al.  EXTREME VALUE THEORY FOR CERTAIN NON-STATIONARY SEQUENCES1 , 1985 .

[118]  Rolf-Dieter Reiss,et al.  A Course on Point Processes , 1992 .

[119]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[120]  Peter Hall,et al.  Estimating probabilities for normal extremes , 1980, Advances in Applied Probability.

[121]  On some goodness-of-fit tests for the normal, logistic and extreme-value distributions , 1992 .

[122]  Julian Z. Wang Selection of the k Largest Order Statistics for the Domain of Attraction of the Gumbel Distribution , 1995 .

[123]  Harry Joe,et al.  Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions , 1996 .

[124]  K. V. Mardia,et al.  Asymptotic Independence of Bivariate Extremes , 1964 .

[125]  D. Dupuis Exceedances over High Thresholds: A Guide to Threshold Selection , 1999 .

[126]  R. Milner Mathematical Centre Tracts , 1976 .

[127]  Richard L. Smith,et al.  Joint versus marginal estimation for bivariate extremes , 1992 .

[128]  A. Pakes ON THE TAILS OF WAITING-TIME DISTRIBUTIONS , 1975 .

[129]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[130]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[131]  Calyampudi Radhakrishna Rao,et al.  Choquet-Deny Type Functional Equations with Applications to Stochastic Models , 1995 .

[132]  J. Beirlant,et al.  RAPID VARIATION WITH REMAINDER AND RATES OF CONVERGENCE , 1988 .

[133]  J. Hüsler,et al.  Maxima of Poisson-like variables and related triangular arrays , 1997 .

[134]  R. Adler,et al.  Tail Behaviour for the Suprema of Gaussian Processes with Applications to Empirical Processes , 1987 .

[135]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[136]  H. Rootzén,et al.  External Theory for Stochastic Processes. , 1988 .

[137]  J. Cohen On the tail of the stationary waiting time distribution and limit theorems for the M/G/1 queue , 1972 .

[138]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[139]  James Pickands,et al.  The Continuous and Differentiable Domains of Attraction of the Extreme Value Distributions , 1986 .

[140]  R. Katz,et al.  Regional Analysis of Temperature Extremes: Spatial Analog for Climate Change? , 1995 .

[141]  Enrique Castillo Extreme value theory in engineering , 1988 .

[142]  H. Ferreira Multivariate extreme values in T-periodic random sequences under mild oscillation restrictions , 1994 .

[143]  Robert Kinnison,et al.  Correlation Coefficient Goodness-of-Fit Test for the Extreme-Value Distribution , 1989 .

[144]  B. Arnold,et al.  The Distribution of the Maximal Time Till Departure from a State in a Markov Chain , 1984 .

[145]  J. Hüsler,et al.  Minimum distance estimators in extreme value distributions , 1996 .

[146]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[147]  Jery R. Stedinger,et al.  Goodness‐of‐fit tests for regional generalized extreme value flood distributions , 1991 .

[148]  Udo Kamps,et al.  A concept of generalized order statistics , 1995 .

[149]  H. Rootzén The rate of convergence of extremes of stationary normal sequences , 1983, Advances in Applied Probability.

[150]  S. Nadarajah,et al.  Ordered multivariate extremes , 1998 .

[151]  D. Pfeifer,et al.  Einführung in die Extremwertstatistik , 1989 .

[152]  J. Albin On Extremal Theory for Stationary Processes , 1990 .

[153]  George L. O'Brien,et al.  Loud Shot Noise , 1991 .

[154]  R. L. Smith,et al.  LOWER TAIL ANALYSIS OF THE DISTRIBUTION OF THE STRENGTH OF LOAD-SHARING SYSTEMS , 1983 .

[155]  Jery R. Stedinger,et al.  L Moment and Probability Plot Correlation Coefficient Goodness‐of‐fit Tests for the Gumbel Distribution and Impact of Autocorrelation , 1995 .

[156]  N. Veraverbeke Asymptotic behaviour of Wiener-Hopf factors of a random walk , 1977 .

[157]  Christos G. Cassandras,et al.  Extremal properties of the shortest/longest non-full queue policies in finite-capacity systems with state-dependent service rates , 1993, Journal of Applied Probability.

[158]  William Q. Meeker,et al.  Fisher Information Matrix for the Extreme Value, Normal and Logistic Distributions and Censored Data , 1994 .

[159]  D. Dupuis Extreme value theory based on the r largest annual events: a robust approach , 1997 .

[160]  Stuart Coles,et al.  Directional Modelling of Extreme Wind Speeds , 1994 .

[161]  Gerard Hooghiemstra,et al.  An Extremal Limit Theorem for the Argmax Process of Brownian Motion Minus a Parabolic Drift , 1998 .

[162]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .

[163]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[164]  William P. McCormick,et al.  Extreme value theory for processes with periodic variances , 1989 .

[165]  James Pickands,et al.  Asymptotic properties of the maximum in a stationary Gaussian process. , 1969 .

[166]  P. Deheuvels Strong laws for the k-th order statistic when k≦c log2n , 1986 .

[167]  M. Falk Best Attainable Rate of Joint Convergence of Extremes , 1989 .

[168]  Jean Bertoin,et al.  Some asymptotic results for transient random walks , 1996, Advances in Applied Probability.

[169]  Jonathan A. Tawn,et al.  An extreme-value theory model for dependent observations , 1988 .

[170]  T. Hsing Extreme value theory for multivariate stationary sequences , 1989 .

[171]  Sidney I. Resnick,et al.  Tail estimates motivated by extreme-value theory , 1984, Advances in Applied Probability.

[172]  Narayanaswamy Balakrishnan,et al.  Order statistics from extreme value distribution, ii: best linear unbiased estimates and some other uses , 1992 .

[173]  J. M. Marco,et al.  On the construction of multivariate distributions with given nonoverlapping multivariate marginals , 1992 .

[174]  Maritz Js,et al.  On the use of the generalised extreme-value distribution in estimating extreme percentiles. , 1967 .

[175]  Gill Mould,et al.  Estimating return period wave heights and wind speeds using a seasonal point process model , 1997 .

[176]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[177]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[178]  Janos Galambos,et al.  11 Univariate extreme value theory and applications , 1998, Order statistics.

[179]  V. M. Silrergleit On the occurrence of geomagnetic storms with sudden commencements , 1996 .

[180]  Paul W. Burton,et al.  Seismic risk of circum-Pacific earthquakes: II. Extreme values using Gumbel's third distribution and the relationship with strain energy release , 1985 .

[181]  E. Cramer,et al.  On the Convergence Rates of Extreme Generalized Order Statistics , 1999 .

[182]  M. Borkovec Extremal behavior of the autoregressive process with ARCH(1) errors , 2000 .

[183]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[184]  Sarma Sastry,et al.  Estimating the minimum of partitioning and floorplanning problems , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[185]  N. Nagaraja,et al.  Some characterizations of continuous distributions based on regressions of adjacent order statistics and record values , 1988 .

[186]  K. Turkman,et al.  Limit laws for the maxima of chain-dependent sequences with positive extremal index , 1992, Journal of Applied Probability.

[187]  Liang Peng,et al.  Rates of Convergence for Bivariate Extremes , 1997 .

[188]  Gian-Carlo Rota,et al.  Stochastic processes in queuing theory: A. A. Borovkov, Springer, 1976, 280 pp. , 1977 .

[189]  H. Ohta,et al.  Goodness-of-Fit Test for Extreme-Value Distribution , 1980, IEEE Transactions on Reliability.

[190]  On extremal theory for self-similar processes , 1998 .

[191]  N. R. Mohan,et al.  Max Domains of Attraction of Univariate and Multivariate p-Max Stable Laws , 1993 .

[192]  Holger Rootzén,et al.  Maxima and exceedances of stationary Markov chains , 1988, Advances in Applied Probability.

[193]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[194]  Claudia Klüppelberg,et al.  Extremal Behavior of Diffusion Models in Finance , 1998 .

[195]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[196]  Simeon M. Berman,et al.  Poisson and extreme value limit theorems for Markov random fields , 1987, Advances in Applied Probability.

[197]  Holger Rootzén,et al.  Extremes of Moving Averages of Stable Processes , 1978 .

[198]  A. M. Hasofer,et al.  A Test for Extreme Value Domain of Attraction , 1992 .

[199]  A. Walden,et al.  Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .

[200]  Jacek Wesołowski,et al.  Linearity of regression for non-adjacent order statistics , 1998 .

[201]  P. Laycock,et al.  Extrapolation of Extreme Pit Depths in Space and Time Using the r Deepest Pit Depths , 1992 .

[202]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[203]  Some properties of multivariate extreme value distributions and multivariate tail equivalence , 1987 .

[204]  Michael Falk,et al.  Von Mises Conditions Revisited , 1993 .

[205]  Stuart G. Coles,et al.  Extreme hurricane wind speeds: estimation, extrapolation and spatial smoothing. , 1998 .

[206]  Seokhoon Yun On Domains of Attraction of Multivariate Extreme Value Distributions under Absolute Continuity , 1997 .

[207]  S. Nadarajah Approximations for Bivariate Extreme Values , 2000 .

[208]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[209]  Daoji Shi,et al.  Fisher information for a multivariate extreme value distribution , 1995 .

[210]  M. Tiku,et al.  Testing the two parameter weibull distribution , 1981 .

[211]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[212]  Laurens de Haan,et al.  Sample extremes: an elementary introduction , 1976 .

[213]  C. Anderson Extreme value theory for a class of discrete distributions with applications to some stochastic processes , 1970 .

[214]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[215]  Sidney I. Resnick,et al.  Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes , 1989 .

[216]  R. Serfozo Functional Limit Theorems for Extreme Values of Arrays of Independent Random Variables , 1982 .

[217]  P. Hall On the rate of convergence of normal extremes , 1979 .

[218]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[219]  R. Perfekt Extremal Behaviour of Stationary Markov Chains with Applications , 1994 .

[220]  J. Pierrat,et al.  ESTIMATION DE LA MOYENNES DES VALEURS LES PLUS ELEVEES D'UNE POPULATION FINIE: APPLICATION AUX INVENTAIRES FORESTIERS , 1995 .

[221]  David Oakesamita K. Manatunga,et al.  Fisher information for a bivariate extreme value distribution , 1992 .

[222]  Liang Peng Estimation of the coefficient of tail dependence in bivariate extremes , 1999 .

[223]  Shi Dao-ji Moment estimation for multivariate extreme value distribution , 1995 .

[224]  A. Whyte,et al.  Utility of reverse Weibull and extreme value density functions to refine diameter distribution growth estimates , 1992 .

[225]  Michael N. Tsimplis,et al.  Extreme sea-level distribution and return periods in the Aegean and Ionian Seas , 1997 .

[226]  S. Grimshaw Computing Maximum Likelihood Estimates for the Generalized Pareto Distribution , 1993 .

[227]  Sidney I. Resnick,et al.  Extreme values of independent stochastic processes , 1977 .

[228]  J. Hosking Testing whether the shape parameter is zero in the generalized extreme-value distribution , 1984 .

[229]  Janos Galambos,et al.  Advanced probability theory , 1988 .

[230]  C. R. Gonçalves,et al.  Asymptotic Distribution of Extremes of Randomly Indexed Random Variables , 1999 .

[231]  H. Nagaraja,et al.  ON A CHARACTERIZATION BASED ON RECORD VALUES , 1977 .

[232]  R. Serfozo EXTREME VALUES OF BIRTH AND DEATH PROCESSES AND QUEUES , 1987 .

[233]  E. Pantcheva,et al.  Limit theorems for extreme order statistics under nonlinear normalization , 1985 .

[234]  A. Obretenov On the dependence function of Sibuya in multivariate extreme value theory , 1991 .

[235]  J. Hüsler A note on extreme values of locally stationary Gaussian processes , 1995 .

[236]  Holger Rootzén A ratio limit theorem for the tails of weighted sums , 1987 .

[237]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[238]  T. A. Bancroft,et al.  Research papers in statistics , 1966 .

[239]  A. Hadi,et al.  Fitting the Generalized Pareto Distribution to Data , 1997 .

[240]  W. McCormick Weak Convergence for the Maxima of Stationary Gaussian Processes Using Random Normalization , 1980 .

[241]  Jonathan A. Tawn,et al.  Modelling Dependence within Joint Tail Regions , 1997 .

[242]  Enrique Castillo,et al.  The Selection of the Domain of Attraction of an Extreme Value Distribution from a Set of Data , 1989 .

[243]  D. Walshaw An Application in Extreme Value Theory of Nonregular Maximum Likelihood Estimation , 1993 .

[244]  Oleg Seleznjev,et al.  Large deviations in the piecewise linear approximation of Gaussian processes with stationary increments , 1996, Advances in Applied Probability.

[245]  H. Joe Multivariate extreme‐value distributions with applications to environmental data , 1994 .

[246]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[247]  Majid Asadi,et al.  Some unified characterization results on generalized Pareto distributions , 2001 .

[248]  D. Korshunov On distribution tail of the maximum of a random walk , 1997 .

[249]  Carlos Escalante-Sandoual MULTIVARIATE EXTREME VALUE DISTRIBUTION WITH MIXED GUMBEL MARGINALS 1 , 1998 .

[250]  C. Anderson,et al.  Local limit theorems for the maxima of discrete random variables , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[251]  On the rate of convergence in extreme value theory , 1988 .

[252]  M. R. Leadbetter Aspects of extreme value theory for stationary processes: A survey , 1974 .

[253]  Richard L. Smith Maximum likelihood estimation in a class of nonregular cases , 1985 .

[254]  Debbie J. Dupuis,et al.  Parameter and quantile estimation for the generalized extreme-value distribution: a second look , 1999 .

[255]  L. de Haan,et al.  On extreme-value theory in the presence of a trend , 1987, Journal of Applied Probability.

[256]  Rinya Takahashi Asymptotic independence and perfect dependence of vector components of multivariate extreme statistics , 1994 .

[257]  D. Cernadas,et al.  Statistical analysis of seismic data from north-western and western Argentina , 1992 .

[258]  James Pickands,et al.  Moment Convergence of Sample Extremes , 1968 .

[259]  C. Dorea Estimation of the extreme value and the extreme points , 1987 .

[260]  C. Field,et al.  Robust estimation of extremes , 1998 .

[261]  H. Joe Estimation of quantiles of the maximum of N observations , 1987 .

[262]  Extreme value theory for a class of nonstationary time series with applications , 1997 .

[263]  K. Sigman,et al.  Sampling at subexponential times, with queueing applications , 1999 .

[264]  I. Olkin,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1983 .

[265]  F. Ashkar,et al.  Regionalization of floods in New Brunswick (Canada) , 1998 .

[266]  Michael A. Stephens,et al.  Goodness of fit for the extreme value distribution , 1977 .

[267]  J. Hüsler,et al.  A note on maxima of bivariate random vectors , 1996 .

[268]  S. Shapiro,et al.  W-test for the Weibull distribution , 1987 .

[269]  James Pickands,et al.  The two-dimensional Poisson process and extremal processes , 1971, Journal of Applied Probability.

[270]  Sidney I. Resnick,et al.  Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution , 1988 .

[271]  Another characterization of the type I extreme value distribution , 1987 .

[272]  Tomasz Rolski,et al.  Stochastic Processes for Insurance and Finance , 2001 .

[273]  E. A. Burke,et al.  Extreme Value Analysis of Solar Energetic Proton Peak Fluxes , 1998 .

[274]  Joel L. Horowitz,et al.  Extreme Values from a Nonstationary Stochastic Process: An Application to Air Quality Analysis , 1980 .

[275]  Rolf-Dieter Reiss,et al.  Statistical analysis of extreme values : from insurance, finance, hydrology and other fields , 1998 .

[276]  P. Hall Representations and limit theorems for extreme value distributions , 1978, Journal of Applied Probability.

[277]  S. Resnick,et al.  Extremes of Moving Averages of Random Variables with Finite Endpoint , 1991 .

[278]  F. Amram Multivariate extreme value distributions for stationary Gaussian sequences , 1985 .

[279]  Frank Marohn An Adaptive Efficient Test for Gumbel Domain of Attraction , 1998 .

[280]  H. V. Hebbar A law of the iterated logarithm for extreme values from gaussian sequences , 1979 .

[281]  Extremes of Markov sequences , 1995 .

[282]  A. Naess,et al.  Estimation of Long Return Period Design Values for Wind Speeds , 1998 .