Microtiles: Extracting Building Blocks from Correspondences

In this paper, we develop a theoretical framework for characterizing shapes by building blocks. We address two questions: First, how do shape correspondences induce building blocks? For this, we introduce a new representation for structuring partial symmetries (partial self‐correspondences), which we call “microtiles”. Starting from input correspondences that form point‐wise equivalence relations, microtiles are obtained by grouping connected components of points that share the same set of symmetry transformations. The decomposition is unique, requires no parameters beyond the input correspondences, and encodes the partial symmetries of all subsets of the input. The second question is: What is the class of shapes that can be assembled from these building blocks? Here, we specifically consider r‐similarity as correspondence model, i.e., matching of local r‐neighborhoods. Our main result is that the microtiles of the partial r‐symmetries of an object S can build all objects that are (r+ε)‐similar to S for any ε >0. Again, the construction is unique. Furthermore, we give necessary conditions for a set of assembly rules for the pairwise connection of tiles. We describe a practical algorithm for computing microtile decompositions under rigid motions, a corresponding prototype implementation, and conduct a number of experiments to visualize the structural properties in practice.

[1]  Wayne O. Cochran,et al.  Similarity Hashing: A Computer Vision Solution to the Inverse Problem of Linear Fractals , 1997 .

[2]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[3]  Leonidas J. Guibas,et al.  Shape segmentation using local slippage analysis , 2004, SGP '04.

[4]  Greg Turk,et al.  Geometric texture synthesis by example , 2004, SGP '04.

[5]  Kun Zhou,et al.  Mesh quilting for geometric texture synthesis , 2006, ACM Trans. Graph..

[6]  N. Mitra,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Transactions on Graphics.

[7]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, ACM Trans. Graph..

[8]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, SIGGRAPH '06.

[9]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[10]  Evangelos Kalogerakis,et al.  Folding meshes: hierarchical mesh segmentation based on planar symmetry , 2006, SGP '06.

[11]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[12]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[13]  Paul Merrell,et al.  Example-based model synthesis , 2007, SI3D.

[14]  Daniel Cohen-Or,et al.  Surface reconstruction using local shape priors , 2007, Symposium on Geometry Processing.

[15]  Daniel G. Aliaga,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Style Grammars for Interactive Visualization of Architecture , 2022 .

[16]  Aurélien Martinet,et al.  Structuring 3D Geometry based on Symmetry and Instancing Information , 2007 .

[17]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[18]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[19]  Hans-Peter Seidel,et al.  Symmetry Detection Using Feature Lines , 2009, Comput. Graph. Forum.

[20]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[21]  Wilmot Li,et al.  Illustrating how mechanical assemblies work , 2010, SIGGRAPH 2010.

[22]  Thomas A. Funkhouser,et al.  Symmetry factored embedding and distance , 2010, ACM Transactions on Graphics.

[23]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[24]  H. Seidel,et al.  A connection between partial symmetry and inverse procedural modeling , 2010, SIGGRAPH 2010.

[25]  H. Seidel,et al.  A connection between partial symmetry and inverse procedural modeling , 2010, ACM Trans. Graph..

[26]  Daniel G. Aliaga,et al.  Inverse Procedural Modeling by Automatic Generation of L‐systems , 2010, Comput. Graph. Forum.

[27]  Niloy J. Mitra,et al.  Intrinsic Regularity Detection in 3D Geometry , 2010, ECCV.

[28]  Wilmot Li,et al.  Illustrating how mechanical assemblies work , 2010, CACM.

[29]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[30]  Jun Li,et al.  Symmetry Hierarchy of Man‐Made Objects , 2011, Comput. Graph. Forum.

[31]  Hans-Peter Seidel,et al.  Pattern-aware shape deformation using sliding dockers , 2011, ACM Trans. Graph..

[32]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[33]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.