Tumor fitness, immune exhaustion and clinical outcomes: impact of immune checkpoint inhibitors

[1]  M. Ceccarelli,et al.  The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. , 2019 .

[2]  T. Chan,et al.  The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy , 2019, Nature Reviews Cancer.

[3]  Alessandro Sette,et al.  The Immune Epitope Database (IEDB): 2018 update , 2018, Nucleic Acids Res..

[4]  H. Honda,et al.  Cytolytic Activity (CYT) Score Is a Prognostic Biomarker Reflecting Host Immune Status in Hepatocellular Carcinoma (HCC) , 2018, AntiCancer Research.

[5]  J. Lunceford,et al.  Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy , 2018, Science.

[6]  Christodoulos Efstathiades,et al.  The Expression and Prognostic Impact of Immune Cytolytic Activity-Related Markers in Human Malignancies: A Comprehensive Meta-analysis , 2018, Front. Oncol..

[7]  M. Buendia,et al.  Hepatitis B Virus Pregenomic RNA in Hepatocellular Carcinoma: A Nosological and Prognostic Determinant , 2018, Hepatology.

[8]  E. Amir,et al.  HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer , 2018, British Journal of Cancer.

[9]  András Szolek,et al.  HLA Typing from Short-Read Sequencing Data with OptiType. , 2018, Methods in molecular biology.

[10]  T. Chan,et al.  Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab , 2017, Cell.

[11]  A. Levine,et al.  A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy , 2017, Nature.

[12]  Adam A. Margolin,et al.  Population-level distribution and putative immunogenicity of cancer neoepitopes , 2017, BMC Cancer.

[13]  Ning Li,et al.  Detection of HBV DNA and antigens in HBsAg-positive patients with primary hepatocellular carcinoma. , 2017, Clinics and research in hepatology and gastroenterology.

[14]  E. Amir,et al.  HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer , 2017, British Journal of Cancer.

[15]  J. Wargo,et al.  Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy , 2017, Cell.

[16]  Mikhail Shugay,et al.  MiXCR: software for comprehensive adaptive immunity profiling , 2015, Nature Methods.

[17]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[18]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[19]  N. Hacohen,et al.  Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity , 2015, Cell.

[20]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[21]  Alan Kay,et al.  HBVdb: a knowledge database for Hepatitis B Virus , 2012, Nucleic Acids Res..

[22]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[23]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[24]  Hemant Ishwaran,et al.  Evaluating Random Forests for Survival Analysis using Prediction Error Curves. , 2012, Journal of statistical software.

[25]  Rohan Shah,et al.  dlmap: An R Package for Mixed Model QTL and Association Analysis , 2012 .

[26]  E. Steyerberg,et al.  [Regression modeling strategies]. , 2011, Revista espanola de cardiologia.

[27]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[28]  A. F. Whiting Identification , 1960, Australian Water Bugs. (Hemiptera - Heteroptera, Gerromorpha & Nepomorpha).

[29]  Juan Carlos Espinosa,et al.  Comprehensive Meta-Analysis , 2004 .

[30]  S. Johnston,et al.  ORF-FINDER: a vector for high-throughput gene identification. , 2002, Gene.

[31]  P. Grambsch,et al.  A Package for Survival Analysis in S , 1994 .