Increment formulations for rounding error reduction in the numerical solution of structured differential systems

Strategies for reducing the effect of cumulative rounding errors in geometric numerical integration are outlined. The focus is, in particular, on the solution of separable Hamiltonian systems using explicit symplectic integration methods and on solving orthogonal matrix differential systems using projection. Examples are given that demonstrate the advantages of an increment formulation over the standard implementation of conventional integrators. We describe how the aforementioned special purpose integration methods have been set up in a uniform, modular and extensible framework being developed in the problem solving environment Mathematica.

[1]  Jack Dongarra,et al.  Computational Science — ICCS 2002 , 2002, Lecture Notes in Computer Science.

[2]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[3]  L. Lopez,et al.  Runge-Kutta Type Methods Based on Geodesics for Systems of ODEs on the Stiefel Manifold , 2001 .

[4]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[5]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[6]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  A. Iserles,et al.  Lie-group methods , 2000, Acta Numerica.

[9]  Jack J. Dongarra,et al.  Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..

[10]  N. Higham MATRIX NEARNESS PROBLEMS AND APPLICATIONS , 1989 .

[11]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[12]  Mark Sofroniou,et al.  Symplectic Methods for Separable Hamiltonian Systems , 2002, International Conference on Computational Science.

[13]  J. Candy,et al.  Symplectic integrators for long-term integrations in celestial mechanics , 1991 .

[14]  Luca Dieci,et al.  Computation of orthonormal factors for fundamental solution matrices , 1999, Numerische Mathematik.

[15]  S. Tremaine,et al.  Roundoff error in long-term planetary orbit integrations , 1990 .

[16]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[17]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[18]  S. Gill,et al.  A process for the step-by-step integration of differential equations in an automatic digital computing machine , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  R. Russell,et al.  Unitary integrators and applications to continuous orthonormalization techniques , 1994 .

[20]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[21]  Israel Koren Computer arithmetic algorithms , 1993 .

[22]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[23]  Ander Murua,et al.  On Order Conditions for Partitioned Symplectic Methods , 1997 .

[24]  Robert D. Skeel,et al.  Explicit canonical methods for Hamiltonian systems , 1992 .

[25]  John C. Butcher,et al.  Order, stepsize and stiffness switching , 1990, Computing.

[26]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[27]  William Kahan,et al.  Composition constants for raising the orders of unconventional schemes for ordinary differential equations , 1997, Math. Comput..

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  Mark Sofroniou,et al.  Solving Orthogonal Matrix Differential Systems in Mathematica , 2002, International Conference on Computational Science.

[30]  D. Earn,et al.  Exact numerical studies of Hamiltonian maps: iterating without roundoff error , 1992 .

[31]  Lawrence F. Shampine,et al.  Automatic selection of the initial step size for an ODE solver , 1987 .

[32]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[33]  D. Higham Time-stepping and preserving orthonormality , 1997 .

[34]  L. Dieci,et al.  Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .

[35]  R. McLachlan,et al.  The accuracy of symplectic integrators , 1992 .

[36]  G. Quispel,et al.  Foundations of Computational Mathematics: Six lectures on the geometric integration of ODEs , 2001 .