Exploiting Social Networking and Mobile Data for Crisis Detection and Management

Every day, vast amounts of social networking data is being produced and consumed at a constantly increasing rate. A user’s digital footprint coming from social networks or mobile devices, such as comments, check-ins and GPS traces contains valuable information about her behavior under normal as well as emergency conditions. The collection and analysis of mobile and social networking data before, during and after a disaster opens new perspectives in areas such as real-time event detection, crisis management and personalization and provides valuable insights about the extent of the disaster, its impact on the affected population and the rate of disaster recovery. Traditional storage and processing systems are unable to cope with the size of the collected data and the complexity of the applied analysis, thus distributed approaches are usually employed. In this work, we propose an open-source distributed platform that can serve as a backend for applications and services related to crisis detection and management by combining spatio-textual user generated data. The system focuses on scalability and relies on a combination of state-of-the art Big Data frameworks. It currently supports the most popular social networks, being easily extensible to any social platform. The experimental evaluation of our prototype attests its performance and scalability even under heavy load, using different query types over various cluster sizes.