Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift
暂无分享,去创建一个
F. Flandoli | E. Priola | F. Flandoli | G. Prato | E. Priola | G. Da Prato | M. Rockner | M. Rockner | M. Röckner | Franco Flandoli
[1] I. Gyongy,et al. On stochastic reaction-diffusion equations with singular force term , 2001 .
[2] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[3] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[4] Franco Flandoli,et al. Pathwise uniqueness for a class of SDE in Hilbert spaces and applications , 2010 .
[5] B. Goldys,et al. Generalized Ornstein–Uhlenbeck Semigroups: Littlewood–Paley–Stein Inequalities and the P. A. Meyer Equivalence of Norms , 2001 .
[6] A. Veretennikov. ON STRONG SOLUTIONS AND EXPLICIT FORMULAS FOR SOLUTIONS OF STOCHASTIC INTEGRAL EQUATIONS , 1981 .
[7] Istvan Gyongy,et al. On Stochastic Differential Equations with Locally Unbounded Drift , 2001 .
[8] Uniqueness and Absolute Continuity for Semilinear SPDE’s , 2013 .
[9] István Gyöngy,et al. Existence and uniqueness results for semilinear stochastic partial differential equations , 1998 .
[10] Transport Equations with Fractal Noise - Existence, Uniqueness and Regularity of the Solution , 2013 .
[11] Hiroshi Tanaka,et al. Perturbation of drift-type for Lévy processes , 1974 .
[12] L. Weis,et al. Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .
[13] F. Flandoli,et al. Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.
[14] Enrico Priola,et al. Pathwise uniqueness for singular SDEs driven by stable processes , 2010, 1005.4237.
[15] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[17] Xicheng Zhang,et al. Strong solutions of SDES with singular drift and Sobolev diffusion coefficients , 2005 .
[18] B. Ferrario. A Note on a Result of Liptser-Shiryaev , 2010, 1005.0237.
[19] I. Gyöngy,et al. Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .
[20] F. Flandoli. Random perturbation of PDEs and fluid dynamic models , 2011 .
[21] A. Rhandi,et al. The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure , 2002 .
[22] I. Gyöngy,et al. On the regularization effect of space-time white noise on quasi-linear parabolic partial differential equations , 1993 .
[23] G. Prato,et al. Ja n 20 12 MAXIMAL L 2 REGULARITY FOR DIRICHLET PROBLEMS IN HILBERT SPACES , 2013 .
[24] Symmetric Ornstein-Uhlenbeck semigroups and their generators , 2002, math/0205315.
[25] J. Doob. Stochastic processes , 1953 .
[26] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[27] A. Zvonkin. A TRANSFORMATION OF THE PHASE SPACE OF A DIFFUSION PROCESS THAT REMOVES THE DRIFT , 1974 .
[28] E. Fedrizzi,et al. Pathwise uniqueness and continuous dependence for SDEs with non-regular drift , 2010, 1004.3485.
[29] J. Maas,et al. Gradient Estimates and Domain Identification for Analytic Ornstein-Uhlenbeck Operators , 2009, 0911.4336.
[30] Giuseppe Da Prato,et al. Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .
[31] K. Roberts,et al. Thesis , 2002 .
[32] M. Röckner,et al. A Concise Course on Stochastic Partial Differential Equations , 2007 .
[33] D. Nualart,et al. On the Stochastic Burgers’ Equation in the Real Line , 1999 .
[34] G. Prato. Kolmogorov Equations For Stochastic Pdes , 2004 .
[35] Michael Röckner,et al. Strong solutions of stochastic equations with singular time dependent drift , 2005 .