Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift

We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hilbert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov’s fundamental result on Rd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin–Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.

[1]  I. Gyongy,et al.  On stochastic reaction-diffusion equations with singular force term , 2001 .

[2]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[3]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[4]  Franco Flandoli,et al.  Pathwise uniqueness for a class of SDE in Hilbert spaces and applications , 2010 .

[5]  B. Goldys,et al.  Generalized Ornstein–Uhlenbeck Semigroups: Littlewood–Paley–Stein Inequalities and the P. A. Meyer Equivalence of Norms , 2001 .

[6]  A. Veretennikov ON STRONG SOLUTIONS AND EXPLICIT FORMULAS FOR SOLUTIONS OF STOCHASTIC INTEGRAL EQUATIONS , 1981 .

[7]  Istvan Gyongy,et al.  On Stochastic Differential Equations with Locally Unbounded Drift , 2001 .

[8]  Uniqueness and Absolute Continuity for Semilinear SPDE’s , 2013 .

[9]  István Gyöngy,et al.  Existence and uniqueness results for semilinear stochastic partial differential equations , 1998 .

[10]  Transport Equations with Fractal Noise - Existence, Uniqueness and Regularity of the Solution , 2013 .

[11]  Hiroshi Tanaka,et al.  Perturbation of drift-type for Lévy processes , 1974 .

[12]  L. Weis,et al.  Maximal Lp-regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-functional Calculus , 2004 .

[13]  F. Flandoli,et al.  Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.

[14]  Enrico Priola,et al.  Pathwise uniqueness for singular SDEs driven by stable processes , 2010, 1005.4237.

[15]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[16]  李幼升,et al.  Ph , 1989 .

[17]  Xicheng Zhang,et al.  Strong solutions of SDES with singular drift and Sobolev diffusion coefficients , 2005 .

[18]  B. Ferrario A Note on a Result of Liptser-Shiryaev , 2010, 1005.0237.

[19]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[20]  F. Flandoli Random perturbation of PDEs and fluid dynamic models , 2011 .

[21]  A. Rhandi,et al.  The domain of the Ornstein-Uhlenbeck operator on an $L^p$-space with invariant measure , 2002 .

[22]  I. Gyöngy,et al.  On the regularization effect of space-time white noise on quasi-linear parabolic partial differential equations , 1993 .

[23]  G. Prato,et al.  Ja n 20 12 MAXIMAL L 2 REGULARITY FOR DIRICHLET PROBLEMS IN HILBERT SPACES , 2013 .

[24]  Symmetric Ornstein-Uhlenbeck semigroups and their generators , 2002, math/0205315.

[25]  J. Doob Stochastic processes , 1953 .

[26]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[27]  A. Zvonkin A TRANSFORMATION OF THE PHASE SPACE OF A DIFFUSION PROCESS THAT REMOVES THE DRIFT , 1974 .

[28]  E. Fedrizzi,et al.  Pathwise uniqueness and continuous dependence for SDEs with non-regular drift , 2010, 1004.3485.

[29]  J. Maas,et al.  Gradient Estimates and Domain Identification for Analytic Ornstein-Uhlenbeck Operators , 2009, 0911.4336.

[30]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[31]  K. Roberts,et al.  Thesis , 2002 .

[32]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[33]  D. Nualart,et al.  On the Stochastic Burgers’ Equation in the Real Line , 1999 .

[34]  G. Prato Kolmogorov Equations For Stochastic Pdes , 2004 .

[35]  Michael Röckner,et al.  Strong solutions of stochastic equations with singular time dependent drift , 2005 .