Edge-preserving tomographic reconstruction with nonlocal regularization

We propose a new objective function for the image reconstruction problem, where the image is comprised of piecewise smooth regions separated by sharp boundaries. We use alternating minimization to minimize our objective function. We use the level set technique to minimize with regard to the boundary. The advantage of this new approach is shown through the bias/variance analysis of a hot spot.

[1]  Jeffrey A. Fessler,et al.  Three-dimensional non-local edge-preserving regularization for PET transmission reconstruction , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[2]  Jeffrey A. Fessler,et al.  Regularization for uniform spatial resolution properties in penalized-likelihood image reconstruction , 2000, IEEE Transactions on Medical Imaging.

[3]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[4]  Jeffrey A. Fessler,et al.  Fast Monotonic Algorithms for Transmission Tomography , 1999, IEEE Trans. Medical Imaging.

[5]  Jeffrey A. Fessler,et al.  Penalized-likelihood estimators and noise analysis for randoms-precorrected PET transmission scans , 1999, IEEE Transactions on Medical Imaging.

[6]  Jeffrey A. Fessler,et al.  Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction , 1999, IEEE Trans. Image Process..

[7]  Michel Barlaud,et al.  Attenuation map segmentation without reconstruction using a level set method in nuclear medicine imaging , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[8]  Jeffrey A. Fessler,et al.  Grouped coordinate descent algorithms for robust edge-preserving image restoration , 1997, Optics & Photonics.

[9]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[10]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[11]  Ronald J. Jaszczak,et al.  Bayesian reconstruction and use of anatomical a priori information for emission tomography , 1996, IEEE Trans. Medical Imaging.

[12]  E U Mumcuoğlu,et al.  Bayesian reconstruction of PET images: methodology and performance analysis. , 1996, Physics in medicine and biology.

[13]  Anand Rangarajan,et al.  Bayesian image reconstruction in SPECT using higher order mechanical models as priors , 1995, IEEE Trans. Medical Imaging.

[14]  Donald Geman,et al.  Nonlinear image recovery with half-quadratic regularization , 1995, IEEE Trans. Image Process..

[15]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Arion F. Chatziioannou,et al.  Detailed investigation of transmission and emission data smoothing protocols and their effects on emission images , 1994, Proceedings of 1994 IEEE Nuclear Science Symposium - NSS'94.

[17]  V. Johnson A Model for Segmentation and Analysis of Noisy Images , 1994 .

[18]  Valen E. Johnson,et al.  A Framework for Incorporating Structural Prior Information into the Estimation of Medical Images , 1993, IPMI.

[19]  Anand Rangarajan,et al.  Bayesian Reconstruction for Emissiom Tomography via Deterministic Annealing , 1993, IPMI.

[20]  Anand Rangarajan,et al.  A continuation method for emission tomography , 1992, IEEE Conference on Nuclear Science Symposium and Medical Imaging.

[21]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Chin-Tu Chen,et al.  Image Restoration Using Gibbs Priors: Boundary Modeling, Treatment of Blurring, and Selection of Hyperparameter , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[25]  Christopher Jennison,et al.  The Specification of Edge Penalties for Regular and Irregular Pixel Images , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[27]  Mario Bertero,et al.  Linear inverse problems with discrete data. I. General formulation and singular system analysis , 1985 .

[28]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Michael E. Phelps,et al.  Quantitation in Positron Emission Computed Tomography , 1980 .

[30]  E. Hoffman,et al.  Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. , 1979, Journal of computer assisted tomography.

[31]  Feng Yu,et al.  Statistical methods for transmission image reconstruction with nonlocal edge -preserving regularization. , 2000 .

[32]  Andrew Blake,et al.  Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.