Charge Transport Physics of Conjugated Polymer Field‐Effect Transistors

Field‐effect transistors based on conjugated polymers are being developed for large‐area electronic applications on flexible substrates, but they also provide a very useful tool to probe the charge transport physics of these complex materials. In this review we discuss recent progress in polymer semiconductor materials, which have brought the performance and mobility of polymer devices to levels comparable to that of small‐molecule organic semiconductors. These new materials have also enabled deeper insight into the charge transport physics of high‐mobility polymer semiconductors gained from experiments with high charge carrier concentration and better molecular‐scale understanding of the electronic structure at the semiconductor/dielectric interface.

[1]  H. Sirringhaus Reliability of Organic Field‐Effect Transistors , 2009 .

[2]  H. Sirringhaus,et al.  Polaron Localization at Interfaces in High‐Mobility Microcrystalline Conjugated Polymers , 2009 .

[3]  A. Troisi,et al.  Computational study of the structure and charge-transfer parameters in low-molecular-mass P3HT. , 2009, The journal of physical chemistry. B.

[4]  Zhenan Bao,et al.  Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications , 2009 .

[5]  Daniel Moses,et al.  Nonlinear transport in semiconducting polymers at high carrier densities. , 2009, Nature materials.

[6]  S. Jenekhe,et al.  Phthalimide-based polymers for high performance organic thin-film transistors. , 2009, Journal of the American Chemical Society.

[7]  Wi Hyoung Lee,et al.  Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. , 2009, Journal of the American Chemical Society.

[8]  Alessandro Troisi,et al.  Charge transport in semiconductors with multiscale conformational dynamics. , 2009, Physical review letters.

[9]  R. J. Kline,et al.  Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin‐Film Organic Transistors , 2009 .

[10]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[11]  Zhenan Bao,et al.  Transistor and solar cell performance of donor–acceptor low bandgap copolymers bearing an acenaphtho[1,2-b]thieno[3,4-e]pyrazine (ACTP) motif , 2009 .

[12]  K. Müllen,et al.  The Influence of Morphology on High‐Performance Polymer Field‐Effect Transistors , 2009 .

[13]  T. Kowalewski,et al.  Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. , 2008, Journal of the American Chemical Society.

[14]  Matthew J. Panzer,et al.  Exploiting Ionic Coupling in Electronic Devices: Electrolyte‐Gated Organic Field‐Effect Transistors , 2008 .

[15]  B. Ong,et al.  Synthetic Aspects of Organic Semiconductors , 2008 .

[16]  H. Sirringhaus,et al.  Materials Challenges and Applications of Solution-Processed Organic Field-Effect Transistors , 2008 .

[17]  H. Sirringhaus,et al.  A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. , 2008, The Journal of chemical physics.

[18]  M. Turbiez,et al.  High‐Mobility Ambipolar Near‐Infrared Light‐Emitting Polymer Field‐Effect Transistors , 2008 .

[19]  M. Ratner,et al.  Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory. , 2008, Journal of the American Chemical Society.

[20]  Martin Heeney,et al.  Undoped polythiophene field-effect transistors with mobility of 1cm2V−1s−1 , 2007 .

[21]  Rui Zhang,et al.  Novel Thiophene‐Thiazolothiazole Copolymers for Organic Field‐Effect Transistors , 2007 .

[22]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[23]  K. Müllen,et al.  Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. , 2007, Journal of the American Chemical Society.

[24]  A. Morpurgo,et al.  Tunable Fröhlich polarons in organic single-crystal transistors , 2006, Nature materials.

[25]  John E Anthony,et al.  Functionalized acenes and heteroacenes for organic electronics. , 2006, Chemical reviews.

[26]  Daniel Moses,et al.  Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors , 2006, Proceedings of the National Academy of Sciences.

[27]  A. S. Dhoot,et al.  Voltage-induced metal-insulator transition in polythiophene field-effect transistors. , 2006, Physical review letters.

[28]  Matthew J. Panzer,et al.  High charge carrier densities and conductance maxima in single-crystal organic field-effect transistors with a polymer electrolyte gate dielectric , 2006 .

[29]  S. H. Park,et al.  Metallic transport in polyaniline , 2006, Nature.

[30]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[31]  Alessandro Troisi,et al.  Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. , 2006, Physical review letters.

[32]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[33]  Thomas N Jackson,et al.  Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/V x s. , 2005, Journal of the American Chemical Society.

[34]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .

[35]  Ping Liu,et al.  High-performance semiconducting polythiophenes for organic thin-film transistors. , 2004, Journal of the American Chemical Society.

[36]  Janos Veres,et al.  Low‐k Insulators as the Choice of Dielectrics in Organic Field‐Effect Transistors , 2003 .

[37]  J. P. Calbert,et al.  Organic semiconductors: A theoretical characterization of the basic parameters governing charge transport , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[39]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[40]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[41]  Thomas N. Jackson,et al.  Pentacene-based organic thin-film transistors , 1997 .

[42]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .