A decentralized unsupervised structural condition diagnosis approach using deep auto‐encoders

[1]  Yun-Lai Zhou,et al.  Damage detection using vibration data and dynamic transmissibility ensemble with auto-associative neural network , 2017 .

[2]  Oral Büyüköztürk,et al.  Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks , 2017, Comput. Aided Civ. Infrastructure Eng..

[3]  B. F. Spencer,et al.  A Test Method for Damage Diagnosis of Suspension Bridge Suspender Cables , 2015, Comput. Aided Civ. Infrastructure Eng..

[4]  P. Torkzadeh,et al.  A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function , 2016 .

[5]  Yi-Zhou Lin,et al.  Structural Damage Detection with Automatic Feature‐Extraction through Deep Learning , 2017, Comput. Aided Civ. Infrastructure Eng..

[6]  André H. Jesus,et al.  Modular Bayesian damage detection for complex civil infrastructure , 2019, Journal of Civil Structural Health Monitoring.

[7]  Mohammad Noori,et al.  Wavelet-Based Approach for Structural Damage Detection , 2000 .

[8]  Charles R. Farrar,et al.  Structural health monitoring algorithm comparisons using standard data sets , 2009 .

[9]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[10]  Xenofon Koutsoukos,et al.  Machine learning based novelty detection using modal analysis , 2019, Comput. Aided Civ. Infrastructure Eng..

[11]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[12]  Moncef Gabbouj,et al.  Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks , 2017 .

[13]  Oral Büyüköztürk,et al.  Structural Damage Detection Using Modal Strain Energy and Hybrid Multiobjective Optimization , 2015, Comput. Aided Civ. Infrastructure Eng..

[14]  Robert D. Adams,et al.  The location of defects in structures from measurements of natural frequencies , 1979 .

[15]  João Paulo Papa,et al.  FEMa: a finite element machine for fast learning , 2019, Neural Computing and Applications.

[16]  Hyoungkwan Kim,et al.  Encoder–decoder network for pixel‐level road crack detection in black‐box images , 2019, Comput. Aided Civ. Infrastructure Eng..

[17]  Neeraj Misra,et al.  Kn-nearest neighbor estimators of entropy , 2008 .

[18]  Rong Jin,et al.  Distance Metric Learning: A Comprehensive Survey , 2006 .

[19]  Jinping Ou,et al.  Recent progress and future trends on damage identification methods for bridge structures , 2019, Structural Control and Health Monitoring.

[20]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .

[21]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[22]  Xinqun Zhu,et al.  Structural damage detection from wavelet packet sensitivity , 2005 .

[23]  Hojjat Adeli,et al.  Enhanced probabilistic neural network with local decision circles: A robust classifier , 2010, Integr. Comput. Aided Eng..

[24]  Hojjat Adeli,et al.  New method for modal identification of super high‐rise building structures using discretized synchrosqueezed wavelet and Hilbert transforms , 2017 .

[25]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[26]  Hojjat Adeli,et al.  A New Neural Dynamic Classification Algorithm , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[27]  Jun Li,et al.  Structural damage identification based on autoencoder neural networks and deep learning , 2018, Engineering Structures.

[28]  S. Law,et al.  Structural damage localization from modal strain energy change , 1998 .

[29]  J. P. Amezquita-Sanchez,et al.  Feature extraction and classication techniques for health monitoring of structures , 2015 .

[30]  Xuefeng Zhao,et al.  Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network , 2019, Comput. Aided Civ. Infrastructure Eng..

[31]  Ming Li,et al.  Bridge Performance Evaluation via Dynamic Fingerprints and Data Fusion , 2019 .

[32]  Hojjat Adeli,et al.  A novel unsupervised deep learning model for global and local health condition assessment of structures , 2018 .

[33]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[34]  Mehrisadat Makki Alamdari,et al.  A spectral-based clustering for structural health monitoring of the Sydney Harbour Bridge , 2017 .

[35]  B. F. Spencer,et al.  Axial Strain Accelerations Approach for Damage Localization in Statically Determinate Truss Structures , 2017, Comput. Aided Civ. Infrastructure Eng..

[36]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[37]  Mustafa Gul,et al.  Eliminating Temperature Effects in Damage Detection for Civil Infrastructure Using Time Series Analysis and Autoassociative Neural Networks , 2019, Journal of Aerospace Engineering.

[38]  Hoon Sohn,et al.  Damage diagnosis using time series analysis of vibration signals , 2001 .

[39]  Hojjat Adeli,et al.  Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures , 2016 .

[40]  Akira Mita,et al.  Structural damage identification using Parzen-window approach and neural networks , 2007 .

[41]  Piotr Omenzetter,et al.  Particle Swarm Optimization with Sequential Niche Technique for Dynamic Finite Element Model Updating , 2015, Comput. Aided Civ. Infrastructure Eng..

[42]  Onur Avci,et al.  Self-Organizing Maps for Structural Damage Detection: A Novel Unsupervised Vibration-Based Algorithm , 2016 .

[43]  Yasunori Miyamori,et al.  Vibration‐based structural state identification by a 1‐dimensional convolutional neural network , 2019, Comput. Aided Civ. Infrastructure Eng..

[44]  Charles R. Farrar,et al.  Machine learning algorithms for damage detection under operational and environmental variability , 2011 .

[45]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[46]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[47]  S. Barnett,et al.  Philosophical Transactions of the Royal Society A : Mathematical , 2017 .

[48]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[49]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[50]  Yu Lei,et al.  Hilbert-Huang Based Approach for Structural Damage Detection , 2004 .

[51]  Yang Wang,et al.  A clustering approach for structural health monitoring on bridges , 2016 .

[52]  Adam Santos,et al.  Finite Element–Based Machine-Learning Approach to Detect Damage in Bridges under Operational and Environmental Variations , 2019, Journal of Bridge Engineering.

[53]  Charles R. Farrar,et al.  Structural Health Monitoring Using Statistical Pattern Recognition Techniques , 2001 .

[54]  James L. Beck,et al.  Structural Health Monitoring via Measured Ritz Vectors Utilizing Artificial Neural Networks , 2006, Comput. Aided Civ. Infrastructure Eng..

[55]  Harshinder Singh,et al.  Nearest Neighbor Estimates of Entropy , 2003 .

[56]  Pizhong Qiao,et al.  Vibration-based Damage Identification Methods: A Review and Comparative Study , 2011 .

[57]  C. Farrar,et al.  SYSTEM IDENTIFICATION FROM AMBIENT VIBRATION MEASUREMENTS ON A BRIDGE , 1997 .

[58]  Mustafa Gul,et al.  Damage detection under varying temperature using artificial neural networks , 2017 .

[59]  Hojjat Adeli,et al.  Evolutionary learning based sustainable strain sensing model for structural health monitoring of high-rise buildings , 2017, Appl. Soft Comput..

[60]  Feng Jia,et al.  An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data , 2016, IEEE Transactions on Industrial Electronics.

[61]  Guido De Roeck,et al.  Dealing with uncertainty in model updating for damage assessment: A review , 2015 .