Hydrodynamic optical-field-ionized plasma channels.

We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order n_{e}(0)=1×10^{17}cm^{-3} and lowest-order modes of spot size W_{M}≈40μm. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5×10^{17}cm^{-3}≲n_{e}(0)≲1×10^{18}cm^{-3} and 61μm≳W_{M}≳33μm. Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

[1]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[2]  S. Hooker,et al.  Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. , 2002, Physical review letters.

[3]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[4]  P. R. Woodruff,et al.  HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling , 2006 .

[5]  Clark,et al.  Optical mode structure of the plasma waveguide , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Cook,et al.  H2, D2, and HD ionization potentials by accurate calibration of several iodine lines. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[7]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[8]  T. Clark,et al.  Time- and Space-Resolved Density Evolution of the Plasma Waveguide , 1997 .

[9]  S. Hooker,et al.  Investigation of a hydrogen plasma waveguide. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Lynch,et al.  Development of a plasma waveguide for high-intensity laser pulses. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  G. Matthieussent,et al.  Eigenmodes for capillary tubes with dielectric walls and ultraintense laser pulse guiding. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[13]  D. Jaroszynski,et al.  Plasma expansion into a waveguide created by a linearly polarized femtosecond laser pulse , 2013 .

[14]  Andrew G. Glen,et al.  APPL , 2001 .

[15]  N. Delerue,et al.  Laser-wakefield acceleration of electron beams in a low density plasma channel , 2010 .

[16]  P. P. Rajeev,et al.  Gamma-rays from harmonically resonant betatron oscillations in a plasma wake , 2011 .

[17]  G. J. Hutchens Approximate near-field blast theory: A generalized approach , 2000 .

[18]  C. Liu,et al.  Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source , 2013, Nature Photonics.

[19]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[20]  Ferenc Krausz,et al.  GeV-scale electron acceleration in a gas-filled capillary discharge waveguide , 2007 .

[21]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[22]  G. Figueira,et al.  Effects of laser polarization in the expansion of plasma waveguides , 2013 .

[23]  R. G. Evans,et al.  Contemporary particle-in-cell approach to laser-plasma modelling , 2015 .

[24]  J Sochacki,et al.  Phase retardation of the uniform-intensity axilens. , 1992, Optics letters.

[25]  Ferenc Krausz,et al.  Real-time observation of laser-driven electron acceleration , 2011 .

[26]  James E. Butler,et al.  Demonstration of a high repetition rate capillary discharge waveguide , 2016 .

[27]  S R Nagel,et al.  Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. , 2009, Physical review letters.

[28]  G. Taylor The formation of a blast wave by a very intense explosion I. Theoretical discussion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  Anders Persson,et al.  Enhanced stability of laser wakefield acceleration using dielectric capillary tubes , 2014 .

[30]  Zulfikar Najmudin,et al.  Bright spatially coherent synchrotron X-rays from a table-top source , 2010 .

[31]  Cohen,et al.  Guiding of High Intensity Laser Pulses in Straight and Curved Plasma Channel Experiments. , 1996, Physical review letters.

[32]  K. Y. Kim,et al.  Guiding of intense laser pulses in plasma waveguides produced from efficient, femtosecond end-pumped heating of clustered gases. , 2005, Physical review letters.

[33]  N. H. Burnett,et al.  Above-threshold ionization in the long-wavelength limit , 1989 .

[34]  S. Hooker,et al.  Developments in laser-driven plasma accelerators , 2013, Nature Photonics.

[35]  H. Milchberg,et al.  Laser wakefield acceleration of electrons with ionization injection in a pure N5+ plasma waveguide , 2014 .

[36]  D J Bone,et al.  Fringe-pattern analysis using a 2-D Fourier transform. , 1986, Applied optics.

[37]  G. Figueira,et al.  Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses , 2018, Scientific Reports.

[38]  B. Schmidt,et al.  Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator , 2015 .

[39]  W. Marsden I and J , 2012 .

[40]  Fan,et al.  Resonant self-trapping and absorption of intense bessel beams , 2000, Physical review letters.

[41]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[42]  P. Audebert,et al.  Monomode Guiding of 10 16 W/cm 2 Laser Pulses over 100 Rayleigh Lengths in Hollow Capillary Dielectric Tubes , 1999 .

[43]  Gallagher Tf,et al.  Above-threshold ionization in low-frequency limit. , 1988 .

[44]  C. Durfee,et al.  Light pipe for high intensity laser pulses. , 1993, Physical review letters.

[45]  M Kando,et al.  Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary. , 2000, Optics letters.

[46]  P. Norreys,et al.  Laser-driven acceleration of electrons in a partially ionized plasma channel. , 2008, Physical review letters.

[47]  J. Mcleod The Axicon: A New Type of Optical Element , 1954 .

[48]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[49]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[50]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[51]  H M Milchberg,et al.  Mode properties of a plasma waveguide for intense laser pulses. , 1994, Optics letters.

[52]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[53]  Zach DeVito,et al.  Opt , 2017 .

[54]  S. Karsch,et al.  Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime. , 2015, Physical review letters.