New generation solar cells: concepts, trends and perspectives.

Organic, dye-sensitized and perovskite solar cell technologies have triggered widespread interest in recent years due to their very promising potential towards a high solar electricity future. A number of important milestones have marked the roadmap of each sector on the way to today's outstanding performances, but there still remains plenty of scope for further improvement. The most influential landmarks, together with basic concepts and future perspectives, are unraveled in this review.

[1]  Boyuan Qi,et al.  Open-circuit voltage in organic solar cells , 2012 .

[2]  T. Torres,et al.  Subphthalocyanines, subporphyrazines, and subporphyrins: singular nonplanar aromatic systems. , 2014, Chemical reviews.

[3]  K. Lu,et al.  Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - A goal toward a "bright" future , 2012 .

[4]  T. Bein,et al.  Highly soluble energy relay dyes for dye-sensitized solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Arie Zaban,et al.  Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives , 1997 .

[6]  M. Grätzel,et al.  Sterically hindered phthalocyanines for dye-sensitized solar cells: influence of the distance between the aromatic core and the anchoring group. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  Matthias Weil,et al.  Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. , 2012, Journal of the American Chemical Society.

[8]  Barry P Rand,et al.  8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer , 2014, Nature Communications.

[9]  Q. Qiao,et al.  Double junction polymer solar cells , 2014 .

[10]  Alex Tullo KRATON GETS ITS BOUNCE BACK: The CEO of the newly public POLYMER FIRM says it has rediscovered its technological origins , 2010 .

[11]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[12]  Guangda Niu,et al.  Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance , 2013 .

[13]  E. Palomares,et al.  Advances in high efficiency dye sensitized solar cells based on Ru(II) free sensitizers and a liquid redox electrolyte , 2012 .

[14]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[15]  Qian Zhang,et al.  Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. , 2013, Journal of the American Chemical Society.

[16]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[17]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[18]  H. Arakawa,et al.  Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells , 2001 .

[19]  R. Holmes,et al.  Efficient, bulk heterojunction organic photovoltaic cells based on boron subphthalocyanine chloride-C70 , 2012 .

[20]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[21]  Luping Yu,et al.  Understanding Low Bandgap Polymer PTB7 and Optimizing Polymer Solar Cells Based on It , 2014, Advanced materials.

[22]  J. Durrant,et al.  Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. , 2008, Journal of the American Chemical Society.

[23]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[24]  L. Giribabu,et al.  Molecular engineering of sensitizers for dye-sensitized solar cell applications. , 2012, Chemical record.

[25]  Peng Wang,et al.  Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks , 2010 .

[26]  M. Griffith,et al.  Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells. , 2014, Chemical communications.

[27]  J. Yao,et al.  A selenophenyl bridged perylene diimide dimer as an efficient solution-processable small molecule acceptor. , 2015, Chemical communications.

[28]  S. Beaupré,et al.  PCDTBT: en route for low cost plastic solar cells , 2013 .

[29]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[30]  K. Tennakone,et al.  A solar cell sensitized with three different dyes , 2004 .

[31]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[32]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[33]  Porphyrin-incorporated 2D D-A polymers with over 8.5% polymer solar cell efficiency. , 2014, Advanced materials.

[34]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[35]  M. Catellani,et al.  Perylene diimides based materials for organic solar cells , 2013 .

[36]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[37]  Brian A. Gregg,et al.  The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells , 2000 .

[38]  M. Green Silicon solar cells: state of the art , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Jia-Hung Tsai,et al.  Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. , 2009, ACS nano.

[40]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[41]  M. Hong,et al.  14.8% perovskite solar cells employing carbazole derivatives as hole transporting materials. , 2014, Chemical communications.

[42]  M. Grätzel,et al.  Dye-sensitized solar cells: A brief overview , 2011 .

[43]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[44]  Philippe Blanchard,et al.  Molecular Materials for Organic Photovoltaics: Small is Beautiful , 2014, Advanced materials.

[45]  R. Hatton,et al.  Halogenated Boron Subphthalocyanines as Light Harvesting Electron Acceptors in Organic Photovoltaics , 2011 .

[46]  Guillermo C Bazan,et al.  Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. , 2014, Accounts of chemical research.

[47]  Kazuhiro Sayama,et al.  Efficient eosin y dye-sensitized solar cell containing Br-/Br3- electrolyte. , 2005, The journal of physical chemistry. B.

[48]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[49]  Gang Li,et al.  Recent trends in polymer tandem solar cells research , 2013 .

[50]  M. Martínez‐Díaz,et al.  Lighting porphyrins and phthalocyanines for molecular photovoltaics. , 2010, Chemical communications.

[51]  Khai Leok Chan,et al.  Organic non-fullerene acceptors for organic photovoltaics , 2011 .

[52]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[53]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[54]  Gang Li,et al.  10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub‐Cells , 2013, Advanced materials.

[55]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[56]  S. Forrest,et al.  High efficiency organic photovoltaic cells based on a vapor deposited squaraine donor , 2009 .

[57]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[58]  M. Grätzel,et al.  Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[60]  T. Umeyama,et al.  Design and control of organic semiconductors and their nanostructures for polymer–fullerene-based photovoltaic devices , 2014 .

[61]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[62]  Michael Grätzel,et al.  High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. , 2009, Nano letters.

[63]  Jean M. J. Fréchet,et al.  Increased light harvesting in dye-sensitized solar cells with energy relay dyes , 2009 .

[64]  Ullrich Steiner,et al.  Lessons Learned: From Dye‐Sensitized Solar Cells to All‐Solid‐State Hybrid Devices , 2014, Advanced materials.

[65]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[66]  D. Hertel,et al.  A simple merocyanine tandem solar cell with extraordinarily high open-circuit voltage , 2011 .

[67]  V. Singh,et al.  Emerging molecular design strategies of unsymmetrical phthalocyanines for dye-sensitized solar cell applications , 2014 .

[68]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[69]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[70]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[71]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[72]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[73]  Ken-Tsung Wong,et al.  A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%. , 2012, Chemical communications.

[74]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[75]  D. Hertel,et al.  Simple, Highly Efficient Vacuum‐Processed Bulk Heterojunction Solar Cells Based on Merocyanine Dyes , 2011 .

[76]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[77]  U. Bach,et al.  Stable dye-sensitized solar cell electrolytes based on cobalt(II)/(III) complexes of a hexadentate pyridyl ligand. , 2013, Angewandte Chemie.

[78]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[79]  Long Ye,et al.  A Potential Perylene Diimide Dimer‐Based Acceptor Material for Highly Efficient Solution‐Processed Non‐Fullerene Organic Solar Cells with 4.03% Efficiency , 2013, Advanced materials.

[80]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[81]  Barry P Rand,et al.  Decreased Recombination Through the Use of a Non‐Fullerene Acceptor in a 6.4% Efficient Organic Planar Heterojunction Solar Cell , 2014 .

[82]  A. Ehret,et al.  Spectral Sensitization of TiO2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes , 2001 .

[83]  Leone Spiccia,et al.  High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. , 2011, Nature chemistry.

[84]  M. Steigerwald,et al.  Efficient organic solar cells with helical perylene diimide electron acceptors. , 2014, Journal of the American Chemical Society.

[85]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[86]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[87]  Michel A. Aegerter,et al.  RU(II) sensitized Nb2O5 solar cell made by the sol-gel process , 1999 .

[88]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[89]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[90]  Srinivas Sista,et al.  Tandem polymer photovoltaic cells—current status, challenges and future outlook , 2011 .

[91]  Christoph J. Brabec,et al.  Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk‐Heterojunction Organic Solar Cells in an Inverted Structure , 2010 .

[92]  Paul W. M. Blom,et al.  Organic Tandem and Multi‐Junction Solar Cells , 2008 .

[93]  Jun-Ho Yum,et al.  Carboxyethynyl anchoring ligands: a means to improving the efficiency of phthalocyanine-sensitized solar cells. , 2012, Angewandte Chemie.

[94]  A. Hagfeldt,et al.  Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[95]  Pierre-Antoine Bouit,et al.  Organic photovoltaics: a chemical approach. , 2010, Chemical communications.

[96]  S. Zakeeruddin,et al.  Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. , 2014, Angewandte Chemie.

[97]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[98]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[99]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[100]  Yongfang Li,et al.  Single‐Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency , 2015, Advanced materials.

[101]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[102]  Peng Wang,et al.  Efficient organic dye-sensitized thin-film solar cells based on the tris(1,10-phenanthroline)cobalt(II/III) redox shuttle , 2011 .

[103]  Ming He,et al.  High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction , 2014 .

[104]  C. Chochos,et al.  Rational design on n-type organic materials for high performance organic photovoltaics , 2013 .

[105]  M. Grätzel,et al.  Meso-substituted porphyrins for dye-sensitized solar cells. , 2014, Chemical reviews.

[106]  Jean-Michel Nunzi,et al.  Rubrene/Fullerene Heterostructures with a Half‐Gap Electroluminescence Threshold and Large Photovoltage , 2007 .

[107]  U. Bach,et al.  Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells , 1999 .

[108]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[109]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[110]  Chao Li,et al.  Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes , 2005 .

[111]  Stephen R. Forrest,et al.  A Hybrid Planar–Mixed Molecular Heterojunction Photovoltaic Cell , 2005 .

[112]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[113]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[114]  M. Grätzel,et al.  High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells. , 2010, Nano letters.

[115]  Á. Sastre‐Santos,et al.  Advances in phthalocyanine-sensitized solar cells (PcSSCs) , 2014 .

[116]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[117]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[118]  Chang-Qi Ma,et al.  Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. , 2009, Chemical reviews.

[119]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[120]  Peter Bäuerle,et al.  Small molecule organic semiconductors on the move: promises for future solar energy technology. , 2012, Angewandte Chemie.

[121]  Yang Yang,et al.  An Efficient Triple‐Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% , 2014, Advanced materials.

[122]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[123]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[124]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[125]  Jun-Ho Yum,et al.  Efficient co-sensitization of nanocrystalline TiO(2) films by organic sensitizers. , 2007, Chemical communications.

[126]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[127]  Shunichiro Ito,et al.  Multi-colored dye-sensitized solar cells , 2004 .

[128]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[129]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[130]  Gregory C. Welch,et al.  Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells , 2014 .

[131]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[132]  K. Yamashita,et al.  Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances , 2015 .

[133]  J. Moser,et al.  A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials , 2012, Nature Communications.

[134]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[135]  Guillermo C Bazan,et al.  Bulk heterojunction solar cells: morphology and performance relationships. , 2014, Chemical reviews.

[136]  Eric Wei-Guang Diau,et al.  Porphyrin-sensitized solar cells. , 2013, Chemical Society reviews.

[137]  T. Torres,et al.  Recent Advances in Phthalocyanine‐Based Sensitizers for Dye‐Sensitized Solar Cells , 2013 .

[138]  Wei Jiang,et al.  Integrated Molecular, Interfacial, and Device Engineering towards High‐Performance Non‐Fullerene Based Organic Solar Cells , 2014, Advanced materials.

[139]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[140]  L. Peter,et al.  Towards sustainable photovoltaics: the search for new materials , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[141]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[142]  S. Y. Chiam,et al.  Low temperature processing solid-state dye sensitized solar cells , 2012 .

[143]  Weiwei Li,et al.  Efficient tandem and triple-junction polymer solar cells. , 2013, Journal of the American Chemical Society.

[144]  Yu-Shan Cheng,et al.  Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer , 2014, Scientific Reports.

[145]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[146]  Kai Sun,et al.  Solvent‐Annealed Crystalline Squaraine: PC70BM (1:6) Solar Cells , 2011 .

[147]  Michael Grätzel,et al.  An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. , 2010, Nature chemistry.

[148]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[149]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[150]  Frederik C. Krebs,et al.  A brief history of the development of organic and polymeric photovoltaics , 2004 .

[151]  P. Frère,et al.  Molecular and supramolecular engineering of π-conjugated systems for photovoltaic conversion , 2006 .

[152]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[153]  Bernard Kippelen,et al.  Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions , 2004 .

[154]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[155]  Rosaria Ciriminna,et al.  Nanochemistry aspects of titania in dye-sensitized solar cells , 2009 .

[156]  Qiquan Qiao,et al.  Triple junction polymer solar cells , 2013 .

[157]  R. Demadrille,et al.  A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability , 2014, Scientific Reports.

[158]  Katherine A Mazzio,et al.  The future of organic photovoltaics. , 2015, Chemical Society reviews.

[159]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[160]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[161]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[162]  Jun-Ho Yum,et al.  Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. , 2007, Angewandte Chemie.

[163]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[164]  G. Boschloo,et al.  Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. , 2010, Journal of the American Chemical Society.

[165]  Uli Würfel,et al.  Overcoming kinetic limitations of electron injection in the dye solar cell via coadsorption and FRET. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[166]  Ryota Goto,et al.  Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. , 2010, Journal of the American Chemical Society.

[167]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[168]  Yang Yang,et al.  A Robust Inter‐Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells , 2011, Advanced materials.

[169]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[170]  Hironori Arakawa,et al.  Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes , 2003 .

[171]  S. Darling,et al.  Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. , 2012, Journal of the American Chemical Society.

[172]  Hyun Suk Jung,et al.  Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems. , 2013, The journal of physical chemistry letters.