Parametric Optimization of End Milling Process Under Minimum Quantity Lubrication With Nanofluid as Cutting Medium Using Pareto Optimality Approach

In this paper a genetic algorithm based multi-objective optimization approach is applied in order to predict the optimal machining parameters for the end milling process of aluminium alloy 6061 T6 combined with minimum quantity lubrication (MQL) conditions using waterbased TiO2 nanofluid as cutting fluid. The optimization is carried out employing a parametric model (in terms of input cutting parameters, i.e., cutting speed, feed rate, depth of cut, MQL flow rate and % volume concentration of nanofluid) and exploiting the capabilities of the MOGA-II algorithm applied to the constrained machining problem. The objective functions selected to optimize are: to minimize the surface roughness; to maximize the material removal rate; and to minimize the flank wear of the cutting tool. The output of the optimization includes several alternative optimal solutions, i.e., Pareto frontier, and the best compromised configuration of the cutting parameters is selected subject to weighted preference

[1]  J. Paulo Davim,et al.  Turning of Brasses Using Minimum Quantity of Lubricant (MQL) and Flooded Lubricant Conditions , 2007 .

[2]  Ichiro Inasaki,et al.  Turning Using Extremely Small Amounts of Cutting Fluids , 1998 .

[3]  M. RahmanM.,et al.  NEURAL NETWORK MODELING OF GRINDING PARAMETERS OF DUCTILE CAST IRON USING MINIMUM QUANTITY LUBRICATION , 2015 .

[4]  V V K Lakshmi,et al.  Modelling and Optimization of Process Parameters during End Milling of Hardened Steel , 2012 .

[5]  John W. Sutherland,et al.  Dry Machining and Minimum Quantity Lubrication , 2004 .

[6]  P Vamsi Krishna,et al.  Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel , 2013 .

[7]  Gholamhassan Najafi,et al.  Nanofluids heat transfer enhancement through straight channel under turbulent flow , 2015 .

[8]  Eduardo Carlos Bianchi,et al.  Study on the behavior of the minimum quantity lubricant - MQL technique under different lubricating and cooling conditions when grinding ABNT 4340 steel , 2005 .

[9]  Mahmudur Rahman,et al.  Experimental Evaluation on the Effect of Minimal Quantities of Lubricant in Milling , 2002 .

[10]  Ying Liu,et al.  Preparation and tribological properties of dual-coated TiO 2 nanoparticles as water-based lubricant additives , 2014 .

[11]  Anselmo Eduardo Diniz,et al.  Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys , 2002 .

[12]  M. Tech,et al.  MODELING AND OPTIMIZATION OF END MILLING MACHINING PROCESS , 2012 .

[13]  Yean-Liang Su,et al.  Wear of CrC-coated carbide tools in dry machining , 2006 .

[14]  Mahmudur Rahman,et al.  Multi-objective optimization of minimum quantity lubrication in end milling of aluminum alloy AA6061T6 , 2015 .

[15]  N. R. Dhar,et al.  Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel , 2006 .

[16]  K. Kadirgama,et al.  Heat Transfer Enhancement With Nanofluids – A Review , 2013 .

[17]  J. Srinivas,et al.  Prediction of Optimal Cutting States during Inward Turning: An Experimental Approach , 2010 .

[18]  Mu-Ming Poo,et al.  Development , 2007, Current Opinion in Neurobiology.

[19]  A. Senthil Kumar,et al.  Evaluation of Minimal of Lubricant in End Milling , 2001 .

[20]  Tomaž Pepelnjak,et al.  Tool Material Behavior at Elevated Temperatures , 2009 .

[21]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[22]  Youhong Tang,et al.  Ultrafine Grained Material Produced by Machining , 2010 .

[23]  Yunn-Shiuan Liao,et al.  Mechanism of minimum quantity lubrication in high-speed milling of hardened steel , 2007 .

[24]  R. Mamat,et al.  Forced Convection Heat Transfer Using Water-Ethylene Glycol (60:40) Based Nanofluids in Automotive Cooling System , 2015 .

[25]  Aitzol Lamikiz,et al.  Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling , 2006 .

[26]  Mahmudur Rahman,et al.  Experimental investigation of flank wear in end milling of aluminum alloy with water-based TiO2 nanofluid lubricant in minimum quantity lubrication technique , 2016 .

[27]  A. Ben-Tal,et al.  Optimality conditions for convex semi‐infinite programming problems , 1980 .

[28]  M. RahmanM.,et al.  Material Removal Rate and Surface Roughness on Grinding of Ductile Cast Iron Using Minimum Quantity Lubrication , 2015 .

[29]  Mahmudur Rahman,et al.  Optimization of Abrasive Machining of Ductile Cast Iron Using Tio2 Nanoparticles: A Multilayer Perceptron Approach , 2015 .

[30]  Mahmudur Rahman,et al.  A COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF SINGLE AND THREE NOZZLES MINIMUM QUANTITY LUBRICANT FLOW FOR MILLING , 2014 .

[31]  K. Kadirgama,et al.  ARTIFICIAL NEURAL NETWORK MODELING OF GRINDING OF DUCTILE CAST IRON USING WATER BASED SiO 2 NANOCOOLANT , 2014 .

[32]  N. R. Dhar,et al.  The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel , 2006 .

[33]  I. Hanafi,et al.  Optimization of cutting conditions for sustainable machining of PEEK-CF30 using TiN tools , 2012 .

[34]  Mahmudur Rahman,et al.  Flank Wear Characterization in Aluminum Alloy (6061 T6) With Nanofluid Minimum Quantity Lubrication Environment Using an Uncoated Carbide Tool , 2015 .

[35]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[36]  Jaisankar,et al.  EVALUATION OF TOOL WEAR & SURFACE FINISH OF AISI 316L STAINLESS STEEL USING NANO CUTTING ENVIRONMENT , 2014 .

[37]  Noordin Mohd Yusof,et al.  Hard Machining of Stainless Steel Using Wiper Coated Carbide: Tool Life and Surface Integrity , 2010 .

[38]  David A. Stephenson,et al.  MINIMUM QUANTITY LUBRICATION (MQL) APPLICATIONS IN AUTOMOTIVE POWER-TRAIN MACHINING , 2006 .

[39]  King Fahd,et al.  A review of nanofluid adoption in polymer electrolyte membrane (PEM) fuel cells as an alternative coolant , 2015 .

[40]  Albert J. Shih,et al.  Application of Nanofluids in Minimum Quantity Lubrication Grinding , 2008 .

[41]  Peter Krajnik,et al.  Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies , 2011 .

[42]  T. Obikawa,et al.  High speed MQL finish-turning of Inconel 718 with different coated tools , 2007 .

[43]  R. Mamat,et al.  Effect of Temperature on Heat Transfer Coefficient of Titanium Dioxide in Ethylene Glycol-based Nanofluid , 2015 .

[44]  Fumihiro Itoigawa,et al.  Effects and mechanisms in minimal quantity lubrication machining of an aluminum alloy , 2006 .

[45]  R. Mamat,et al.  Nanofluid Properties For Forced Convection Heat Transfer: An Overview , 2013 .

[46]  Rahman Saidur,et al.  A REVIEW ON APPLICATIONS AND CHALLENGES OF NANOFLUIDS , 2011 .

[47]  S. Thirumalini,et al.  Experimental study of heat transfer enhancement in automobile radiator using Al^2^O^3 water-ethylene glycol nanofluid coolants , 2015 .

[48]  P. Sreejith,et al.  Dry machining: Machining of the future , 2000 .

[49]  M. RahmanM.,et al.  Experimental Investigation of Minimum Quantity Lubrication on Tool Wear in Aluminum Alloy 6061-T6 using Different Cutting Tools , 2014 .

[50]  Fei Liu,et al.  A decision-making framework model of cutting fluid selection for green manufacturing and a case study , 2002 .

[51]  Robert Heinemann,et al.  Effect of MQL on the tool life of small twist drills in deep-hole drilling , 2006 .

[52]  M. RahmanM.,et al.  Experimental Study on Minimum Quantity Lubrication in End Milling of AA6061-T6 Using Tialn Coated Carbide Tools , 2015 .

[53]  M. Kamal,et al.  Minimum Quantity Lubricant Flow Analysis In End Milling Processes: A Computational Fluid Dynamics Approach , 2012 .

[54]  I. S. Jawahir,et al.  A comprehensive tool-wear/tool-life performance model in the evaluation of NDM (near dry machining) for sustainable manufacturing , 2008 .

[55]  Mahmudur Rahman,et al.  Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy, AA6061-T6 , 2016 .

[56]  M. RahmanM.,et al.  Machining Performance Of Aluminum Alloy 6061-T6 On Surface Finish Using Minimum Quantity Lubrication , 2015 .