Computing confidence intervals from massive data via penalized quantile smoothing splines
暂无分享,去创建一个
Enrique del Castillo | Nirmal Govind | Likun Zhang | Andrew J. Berglund | Martin P. Tingley | E. Castillo | M. Tingley | Likun Zhang | Andrew J. Berglund | Nirmal Govind
[1] C. Loader,et al. Simultaneous Confidence Bands for Linear Regression and Smoothing , 1994 .
[2] G. Danabasoglu,et al. The Community Climate System Model Version 4 , 2011 .
[3] Gerhard Dikta,et al. Bootstrap approximation of nearest neighbor regression function estimates , 1990 .
[4] E. Maurer,et al. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping , 2012 .
[5] S. Sain,et al. Confidence Regions for Spatial Excursion Sets From Repeated Random Field Observations, With an Application to Climate , 2018, Journal of the American Statistical Association.
[6] D. Nychka,et al. Period analysis of variable stars by robust smoothing , 2004 .
[7] Doug Nychka,et al. A Nonparametric Regression Approach to Syringe Grading for Quality Improvement , 1995 .
[8] Lukas H. Meyer,et al. Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.
[9] H. Bondell,et al. Flexible Bayesian quantile regression for independent and clustered data. , 2010, Biostatistics.
[10] Robert J. Renka,et al. Algorithm 751: TRIPACK: a constrained two-dimensional Delaunay triangulation package , 1996, TOMS.
[11] Pin T. Ng,et al. A Frisch-Newton Algorithm for Sparse Quantile Regression , 2005 .
[12] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[13] Philip T Reiss,et al. The International Journal of Biostatistics Smoothness Selection for Penalized Quantile Regression Splines , 2012 .
[14] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[15] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[16] R. Koenker. Quantile Regression: Name Index , 2005 .
[17] James Stephen Marron,et al. BOOTSTRAP SIMULTANEOUS ERROR BARS FOR NONPARAMETRIC REGRESSION , 1991 .
[18] Ming Yuan,et al. GACV for quantile smoothing splines , 2006, Comput. Stat. Data Anal..
[19] R. Koenker,et al. Penalized triograms: total variation regularization for bivariate smoothing , 2004 .
[20] D. Cox. Asymptotics for $M$-Type Smoothing Splines , 1983 .
[21] A. Thomson,et al. The representative concentration pathways: an overview , 2011 .
[22] Guang Cheng,et al. Computational Limits of A Distributed Algorithm for Smoothing Spline , 2015, J. Mach. Learn. Res..
[23] Jonathan Kua,et al. A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming Over HTTP , 2017, IEEE Communications Surveys & Tutorials.
[24] James Serrin,et al. On the definition and properties of certain variational integrals , 1961 .
[25] Y. Ye,et al. A convergent algorithm for quantile regression with smoothing splines , 1995 .
[26] P. Hall. The Bootstrap and Edgeworth Expansion , 1992 .
[27] P. Bickel,et al. ON THE CHOICE OF m IN THE m OUT OF n BOOTSTRAP AND CONFIDENCE BOUNDS FOR EXTREMA , 2008 .
[28] Purnamrita Sarkar,et al. A scalable bootstrap for massive data , 2011, 1112.5016.
[29] Roger Koenker,et al. Inequality constrained quantile regression , 2005 .
[30] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[31] G. Wahba. Spline models for observational data , 1990 .
[32] Xuming He,et al. Bayesian empirical likelihood for quantile regression , 2012, 1207.5378.