Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children

[1]  E. Maguire,et al.  Using OPMs to measure neural activity in standing, mobile participants , 2021, NeuroImage.

[2]  Matthew J. Brookes,et al.  Precision magnetic field modelling and control for wearable magnetoencephalography , 2021, NeuroImage.

[3]  Matthew J. Brookes,et al.  Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system , 2021, NeuroImage.

[4]  Matthew J. Brookes,et al.  Measuring functional connectivity with wearable MEG , 2020, NeuroImage.

[5]  Matthew J. Brookes,et al.  Mouth magnetoencephalography: A unique perspective on the human hippocampus , 2020, NeuroImage.

[6]  C. Madan Review for "Variance in cortical depth across the brain surface: Implications for transcranial stimulation of the brain" , 2020 .

[7]  N. J. Davis Variance in cortical depth across the brain surface , 2020, bioRxiv.

[8]  Matthew J. Brookes,et al.  Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system , 2020, NeuroImage.

[9]  Julia M Stephen,et al.  Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System , 2020, PloS one.

[10]  Mark W. Woolrich,et al.  The role of transient spectral ‘bursts’ in functional connectivity: A magnetoencephalography study , 2020, NeuroImage.

[11]  Niall Holmes,et al.  Pragmatic spatial sampling for wearable MEG arrays , 2019, Scientific Reports.

[12]  Matthew J. Brookes,et al.  Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography , 2019, NeuroImage.

[13]  Niall Holmes,et al.  Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography , 2019, Scientific Reports.

[14]  G. Barnes,et al.  Human motor cortical beta bursts relate to movement planning and response errors , 2019, PLoS biology.

[15]  Matthew J. Brookes,et al.  Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography , 2019, NeuroImage.

[16]  Mark W. Woolrich,et al.  A tool for functional brain imaging with lifespan compliance , 2019, Nature Communications.

[17]  Matthew J. Brookes,et al.  Towards OPM-MEG in a virtual reality environment , 2019, NeuroImage.

[18]  Lauri Parkkonen,et al.  Potential of on-scalp MEG: Robust detection of human visual gamma-band responses , 2019, bioRxiv.

[19]  Matthew J. Brookes,et al.  A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography , 2018, NeuroImage.

[20]  Niall Holmes,et al.  Moving magnetoencephalography towards real-world applications with a wearable system , 2018, Nature.

[21]  J. Osborne,et al.  Fully integrated standalone zero field optically pumped magnetometer for biomagnetism , 2018, OPTO.

[22]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[23]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[24]  Margot J. Taylor,et al.  Longitudinal Study of White Matter Development and Outcomes in Children Born Very Preterm , 2016, Cerebral cortex.

[25]  Natsuhiko Mizutani,et al.  Human magnetoencephalogram measurements using newly developed compact module of high-sensitivity atomic magnetometer , 2015 .

[26]  Jukka Nenonen,et al.  Improving MEG Performance With Additional Tangential Sensors , 2013, IEEE Transactions on Biomedical Engineering.

[27]  Joachim Gross,et al.  Good practice for conducting and reporting MEG research , 2013, NeuroImage.

[28]  J. Haueisen,et al.  Reconstruction of quasi-radial dipolar activity using three-component magnetic field measurements , 2012, Clinical Neurophysiology.

[29]  Audrey R. Nath,et al.  The Developmental Trajectory of Brain-Scalp Distance from Birth through Childhood: Implications for Functional Neuroimaging , 2011, PloS one.

[30]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[31]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[32]  G. Nolte The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. , 2003, Physics in medicine and biology.

[33]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[34]  J. Sarvas Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. , 1987, Physics in medicine and biology.

[35]  D. Cohen Magnetoencephalography: Detection of the Brain's Electrical Activity with a Superconducting Magnetometer , 1972, Science.

[36]  Claude Cohen-Tannoudji,et al.  Diverses résonances de croisement de niveaux sur des atomes pompés optiquement en champ nul. I. Théorie , 1970 .

[37]  S. Haroche,et al.  Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances , 1969 .

[38]  John Lambe,et al.  QUANTUM INTERFERENCE EFFECTS IN JOSEPHSON TUNNELING , 1964 .