The Autodidactic Universe

We present an approach to cosmology in which the Universe learns its own physical laws. It does so by exploring a landscape of possible laws, which we express as a certain class of matrix models. We discover maps that put each of these matrix models in correspondence with both a gauge/gravity theory and a mathematical model of a learning machine, such as a deep recurrent, cyclic neural network. This establishes a correspondence between each solution of the physical theory and a run of a neural network. This correspondence is not an equivalence, partly because gauge theories emerge from N → ∞ limits of the matrix models, whereas the same limits of the neural networks used here are not well-defined. We discuss in detail what it means to say that learning takes place in autodidactic systems, where there is no supervision. We propose that if the neural network model can be said to learn without supervision, the same can be said for the corresponding physical theory. 1 ar X iv :2 10 4. 03 90 2v 1 [ he pth ] 2 9 M ar 2 02 1 We consider other protocols for autodidactic physical systems, such as optimization of graph variety, subset-replication using self-attention and look-ahead, geometrogenesis guided by reinforcement learning, structural learning using renormalization group techniques, and extensions. These protocols together provide a number of directions in which to explore the origin of physical laws based on putting machine learning architectures in correspondence with physical theories.

[1]  Hosam Abdo,et al.  The Total Irregularity of a Graph , 2012, Discret. Math. Theor. Comput. Sci..

[2]  Zohar Ringel,et al.  Mutual information, neural networks and the renormalization group , 2017, ArXiv.

[3]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[4]  Jure Leskovec,et al.  Learning Structural Node Embeddings via Diffusion Wavelets , 2017, KDD.

[5]  Steven Weinstein,et al.  Learning the Einstein-Podolsky-Rosen correlations on a Restricted Boltzmann Machine , 2017, 1707.03114.

[6]  Liang Dai,et al.  Identifying knot types of polymer conformations by machine learning. , 2020, Physical review. E.

[7]  Jascha Sohl-Dickstein,et al.  A Correspondence Between Random Neural Networks and Statistical Field Theory , 2017, ArXiv.

[8]  C. Bény Deep learning and the renormalization group , 2013, 1301.3124.

[9]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[10]  C. Rovelli,et al.  Relational Quantum Mechanics , 2006 .

[11]  C. Trugenberger,et al.  Emergence of the circle in a statistical model of random cubic graphs , 2020, 2008.11779.

[12]  Hugo Larochelle,et al.  An Infinite Restricted Boltzmann Machine , 2015, Neural Computation.

[13]  Extremal variety as the foundation of a cosmological quantum theory , 1992, hep-th/9203041.

[14]  B. Rothschild,et al.  Asymptotic enumeration of partial orders on a finite set , 1975 .

[15]  Hosam Abdo,et al.  Graphs with maximal σ irregularity , 2018, Discret. Appl. Math..

[16]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[17]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[18]  Akinori Tanaka,et al.  Deep learning and the AdS/CFT correspondence , 2018, Physical Review D.

[19]  The cubic matrix model and a duality between strings and loops , 2000, hep-th/0006137.

[20]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[21]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[22]  G. Bateson,et al.  STEPS TO AN ECOLOGY OF MIND COLLECTED ESSAYS IN ANTHROPOLOGY, PSYCHIATRY, EVOLUTION, AND EPISTEMOLOGY , 2006 .

[23]  Luca Weisz,et al.  The Life Of The Cosmos , 2016 .

[24]  F. K. Bell A note on the irregularity of graphs , 1992 .

[25]  R. Loll,et al.  Quantum gravity from causal dynamical triangulations: a review , 2019, Classical and Quantum Gravity.

[26]  K. Hashimoto AdS/CFT correspondence as a deep Boltzmann machine , 2019, Physical Review D.

[27]  L. Smolin Precedence and Freedom in Quantum Physics , 2012, 1205.3707.

[28]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[29]  Simon Portegies Zwart,et al.  Numerical verification of the microscopic time reversibility of Newton's equations of motion: Fighting exponential divergence , 2018, Commun. Nonlinear Sci. Numer. Simul..

[30]  Ginestra Bianconi,et al.  Network Geometry and Complexity , 2017, Journal of Statistical Physics.

[31]  P. Erdös ASYMMETRIC GRAPHS , 2022 .

[32]  L. Hardy Operational General Relativity: Possibilistic, Probabilistic, and Quantum , 2016, 1608.06940.

[33]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[34]  Gavin E Crooks,et al.  Measuring thermodynamic length. , 2007, Physical review letters.

[35]  A. Davison A world beyond physics: the emergence and evolution of life , 2021 .

[36]  L. Susskind The Anthropic Landscape of String Theory , 2003, hep-th/0302219.

[37]  Jason Yosinski,et al.  Hamiltonian Neural Networks , 2019, NeurIPS.

[38]  J. Plebański On the separation of Einsteinian substructures , 1977 .

[39]  Stuart A. Kauffman,et al.  Answering Schrödinger’s “What Is Life?” , 2020, Entropy.

[40]  Washington Taylor M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory , 2001 .

[41]  Judith Scott Clayton,et al.  The Future , 2001, Nature.

[42]  Christy Kelly,et al.  Convergence of combinatorial gravity , 2021, Physical Review D.

[43]  Paul Erdös,et al.  How to Define an Irregular Graph , 1988 .

[44]  L. Smolin Unification of the State with the Dynamical Law , 2012, 1201.2632.

[45]  M theory as a matrix extension of Chern–Simons theory , 2000, hep-th/0002009.

[46]  L. Smolin Einstein's Unfinished Revolution: The Search for What Lies Beyond the Quantum , 2019 .

[47]  Zohar Ringel,et al.  Optimal Renormalization Group Transformation from Information Theory , 2018, Physical Review X.

[48]  Paul Erdös,et al.  Highly irregular graphs , 1987, J. Graph Theory.

[49]  B. Carter The significance of numerical coincidences in nature , 2007, 0710.3543.

[50]  L. Smolin Quantum Mechanics and the Principle of Maximal Variety , 2015, 1506.02938.

[51]  David J. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[52]  Roger G. Melko,et al.  Super-resolving the Ising model with convolutional neural networks , 2018, Physical Review B.

[53]  Hadas Keren-Shaul,et al.  Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis , 2021, Nature.

[54]  Ling Cheng,et al.  Is Deep Learning a Renormalization Group Flow? , 2020, IEEE Access.

[55]  E. Livine,et al.  BRST quantization of Matrix Chern-Simons Theory , 2002, hep-th/0212043.

[56]  G. Horowitz Exactly soluble diffeomorphism invariant theories , 1989 .

[57]  Wojciech H. Zurek,et al.  Objective past of a quantum universe: Redundant records of consistent histories , 2013, 1312.0331.

[58]  J. Barrow,et al.  The Anthropic Cosmological Principle , 1987 .

[59]  R. Bousso,et al.  The string theory landscape. , 2004, Scientific American.

[60]  Alejandro Perez,et al.  The Spin-Foam Approach to Quantum Gravity , 2012, Living reviews in relativity.

[61]  Fay Dowker,et al.  The Causal Set Approach to Quantum Gravity , 2013 .

[62]  Ernesto Estrada Quantifying network heterogeneity. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  L. Smolin Plebanski action extended to a unification of gravity and Yang-Mills theory , 2007, 0712.0977.

[64]  S. Amari Information geometry , 2021, Japanese Journal of Mathematics.

[65]  D. Lundholm,et al.  On The Construction of Zero Energy States in Supersymmetric Matrix Models III , 1997, 0706.0353.

[66]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[67]  Ginestra Bianconi,et al.  Emergent Complex Network Geometry , 2014, Scientific Reports.

[68]  Michael G. Neubauer,et al.  Sum of squares of degrees in a graph , 2008, 0808.2234.

[69]  Jaime F. Cárdenas-García,et al.  The Process of Info-Autopoiesis – the Source of all Information , 2020, Biosemiotics.

[70]  Dmitri V. Krioukov,et al.  Network geometry , 2020, Nature Reviews Physics.

[71]  L. Smolin,et al.  Unification of gravity, gauge fields and Higgs bosons , 2010, 1004.4866.

[72]  S. Chern,et al.  Characteristic forms and geometric invariants , 1974 .

[73]  Lei Wang,et al.  Neural Network Renormalization Group , 2018, Physical review letters.

[74]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[75]  M. Cortês,et al.  Quantum energetic causal sets , 2013, 1308.2206.

[76]  L. Mason,et al.  Self-dual 2-forms and gravity , 1991 .

[77]  David Chester,et al.  The Self-Simulation Hypothesis Interpretation of Quantum Mechanics , 2020, Entropy.

[78]  Anna Kuchment The Universe Within , 2012 .

[79]  D. Dieks,et al.  Forty Years of String Theory Reflecting on the Foundations , 2013 .

[80]  L. Smolin Did the Universe Evolve , 1992 .

[81]  G. Leibniz Discourse on Metaphysics , 1902 .

[82]  L. Collatz,et al.  Spektren endlicher grafen , 1957 .

[83]  Michael O. Albertson,et al.  The Irregularity of a Graph , 1997, Ars Comb..

[84]  Dmitri V. Krioukov,et al.  Ollivier-Ricci curvature convergence in random geometric graphs , 2020, Physical Review Research.

[85]  C. Trugenberger,et al.  Self-assembly of geometric space from random graphs , 2019, Classical and Quantum Gravity.

[86]  W. Taylor,et al.  The F-theory geometry with most flux vacua , 2015, 1511.03209.

[87]  L. Kadanoff Scaling laws for Ising models near T(c) , 1966 .