A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation
暂无分享,去创建一个
[1] J. Killingbeck. Direct expectation value calculations , 1985 .
[2] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[3] S. M. Holzer,et al. Book Reviews : SYSTEM DYNAMICS Katsuhiko Ogata Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978 , 1980 .
[4] J. Killingbeck. Some applications of perturbation theory to numerical integration methods for the Schrödinger equation , 1979 .
[5] Tom E. Simos,et al. A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .
[6] Majida Kobeissi,et al. On testing difference equations for the diatomic eigenvalue problem , 1988 .
[7] Veerle Fack,et al. A finite difference approach for the calculation of perturbed oscillator energies , 1985 .
[8] Veerle Fack,et al. Extended) Numerov method for computing eigenvalues of specific Schrodinger equations , 1987 .
[9] J. Killingbeck,et al. Shooting methods for the Schrodinger equation , 1987 .
[10] A. Mitra. On the interaction of the type λx2/(1+gx2) , 1978 .
[11] A. Messiah. Quantum Mechanics , 1961 .
[12] V. S. Varma. On the x2+λx2/(1+gx2) interaction , 1981 .
[13] V. Fack,et al. A program for the calculation of energy eigenvalues and eigenstates of a schrödinger equation , 1986 .
[14] Gh. Adam,et al. A first-order perturbative numerical method for the solution of the radial schrödinger equation , 1976 .
[15] N. Bessis,et al. A note on the Schrödinger equation for the x2+λx2/(1+gx2) potential , 1980 .
[16] R. Hodgson. Precise shooting methods for the Schrodinger equation , 1988 .
[17] G. Stewart,et al. An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .
[18] J. Killingbeck. A pocket calculator determination of energy eigenvalues , 1977 .
[19] G. Flessas. Definite integrals as solutions for the x2+λx2/(1+gx2) potential , 1982 .
[20] Veerle Fack,et al. Numerical methods for solving radial Schro¨dinger equations , 1989 .
[21] M. Nagarajan,et al. Exact solutions of the Schrodinger equation (-d/dx2 + x2 + λx2/(1 + gx2))ψ(x) = Eψ(x) , 1982 .
[22] H. Schaefer. Methods of Electronic Structure Theory , 1977 .
[23] Ali El-Hajj,et al. On computing eigenvalues of the Schrodinger equation for symmetrical potentials , 1989 .
[24] C. S. Lai,et al. On the Schrodinger equation for the interaction x2+λx2/(1+gx2) , 1982 .
[25] H. Meyer,et al. Dynamic‐group approach to the x2+λx2/(1+gx2) potential , 1986 .
[26] J. Killingbeck. Accurate finite difference eigenvalues , 1986 .
[27] G. Flessas. On the Schrdinger equation for the x2 + ?x2/(1 + gx2) interaction , 1981 .
[28] H. Meyer,et al. Some finite difference methods for computing eigenvalues and eigenvectors of special two-point boundary value problems , 1987 .
[29] H. Kobeissi. On an 'eigenvalue function' associated to the electronic potential of any diatomic molecule , 1982 .