A new finite difference scheme with minimal phase-lag for the numerical solution of the Schrödinger equation

A new finite difference approach for the numerical solution of the eigenvalue problem of the Schrodinger equations is developed in this paper. The new approach is based on the maximization of the algebraic order and the minimization of the phase-lag. We investigate two cases: (i) The specific case in which the potential V(x) is an even function with respect to x. It is assumed, also, that the wavefunctions tend to zero for x->+/-~. (ii) The general case for positive and negative eigenvalues and for the well-known cases of the Morse potential and Woods-Saxon or Optical potential. Numerical and theoretical results show that this new approach is more efficient when compared with previously derived methods.

[1]  J. Killingbeck Direct expectation value calculations , 1985 .

[2]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[3]  S. M. Holzer,et al.  Book Reviews : SYSTEM DYNAMICS Katsuhiko Ogata Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978 , 1980 .

[4]  J. Killingbeck Some applications of perturbation theory to numerical integration methods for the Schrödinger equation , 1979 .

[5]  Tom E. Simos,et al.  A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .

[6]  Majida Kobeissi,et al.  On testing difference equations for the diatomic eigenvalue problem , 1988 .

[7]  Veerle Fack,et al.  A finite difference approach for the calculation of perturbed oscillator energies , 1985 .

[8]  Veerle Fack,et al.  Extended) Numerov method for computing eigenvalues of specific Schrodinger equations , 1987 .

[9]  J. Killingbeck,et al.  Shooting methods for the Schrodinger equation , 1987 .

[10]  A. Mitra On the interaction of the type λx2/(1+gx2) , 1978 .

[11]  A. Messiah Quantum Mechanics , 1961 .

[12]  V. S. Varma On the x2+λx2/(1+gx2) interaction , 1981 .

[13]  V. Fack,et al.  A program for the calculation of energy eigenvalues and eigenstates of a schrödinger equation , 1986 .

[14]  Gh. Adam,et al.  A first-order perturbative numerical method for the solution of the radial schrödinger equation , 1976 .

[15]  N. Bessis,et al.  A note on the Schrödinger equation for the x2+λx2/(1+gx2) potential , 1980 .

[16]  R. Hodgson Precise shooting methods for the Schrodinger equation , 1988 .

[17]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[18]  J. Killingbeck A pocket calculator determination of energy eigenvalues , 1977 .

[19]  G. Flessas Definite integrals as solutions for the x2+λx2/(1+gx2) potential , 1982 .

[20]  Veerle Fack,et al.  Numerical methods for solving radial Schro¨dinger equations , 1989 .

[21]  M. Nagarajan,et al.  Exact solutions of the Schrodinger equation (-d/dx2 + x2 + λx2/(1 + gx2))ψ(x) = Eψ(x) , 1982 .

[22]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[23]  Ali El-Hajj,et al.  On computing eigenvalues of the Schrodinger equation for symmetrical potentials , 1989 .

[24]  C. S. Lai,et al.  On the Schrodinger equation for the interaction x2+λx2/(1+gx2) , 1982 .

[25]  H. Meyer,et al.  Dynamic‐group approach to the x2+λx2/(1+gx2) potential , 1986 .

[26]  J. Killingbeck Accurate finite difference eigenvalues , 1986 .

[27]  G. Flessas On the Schrdinger equation for the x2 + ?x2/(1 + gx2) interaction , 1981 .

[28]  H. Meyer,et al.  Some finite difference methods for computing eigenvalues and eigenvectors of special two-point boundary value problems , 1987 .

[29]  H. Kobeissi On an 'eigenvalue function' associated to the electronic potential of any diatomic molecule , 1982 .