Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐pyramidal cell connectivity

In this work, through a detailed literature review, data‐mining, and extensive calculations, we provide a current, quantitative estimate of the cellular and synaptic constituents of the CA1 region of the rat hippocampus. Beyond estimating the cell numbers of GABAergic interneuron types, we calculate their convergence onto CA1 pyramidal cells and compare it with the known input synapses on CA1 pyramidal cells. The convergence calculation and comparison are also made for excitatory inputs to CA1 pyramidal cells. In addition, we provide a summary of the excitatory and inhibitory convergence onto interneurons. The quantitative knowledge base assembled and synthesized here forms the basis for data‐driven, large‐scale computational modeling efforts. Additionally, this work highlights specific instances where the available data are incomplete, which should inspire targeted experimental projects toward a more complete quantification of the CA1 neurons and their connectivity. © 2013 Wiley Periodicals, Inc.

[1]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[2]  T. Vitalis,et al.  Neuronal nitric oxide synthase expressing neurons: a journey from birth to neuronal circuits , 2012, Front. Neural Circuits.

[3]  M. Whittington,et al.  Long-Range–Projecting GABAergic Neurons Modulate Inhibition in Hippocampus and Entorhinal Cortex , 2012, Science.

[4]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[5]  Kathleen S Rockland,et al.  GABAergic projections from the hippocampus to the retrosplenial cortex in the rat , 2007, The European journal of neuroscience.

[6]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[7]  J. R.,et al.  Quantitative analysis , 1892, Nature.

[8]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[9]  L. Acsády,et al.  Serotonergic control of the hippocampus via local inhibitory interneurons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  L. Slomianka,et al.  Hippocampal pyramidal cells: the reemergence of cortical lamination , 2011, Brain Structure and Function.

[11]  Menno P. Witter,et al.  Entorhinal projections to the hippocampal CA1 region in the rat: An underestimated pathway , 1988, Neuroscience Letters.

[12]  Y. Ben-Ari,et al.  Organization of the GABAergic system in the rat hippocampal formation: A quantitative immunocytochemical study , 1989, The Journal of comparative neurology.

[13]  Marco Capogna,et al.  Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells , 2007, The European journal of neuroscience.

[14]  Toshio Iijima,et al.  Dual Transneuronal Tracing in the Rat Entorhinal-Hippocampal Circuit by Intracerebral Injection of Recombinant Rabies Virus Vectors , 2008, Front. Neuroanat..

[15]  T. Kosaka,et al.  Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector , 1994, Experimental Brain Research.

[16]  T. Freund,et al.  Inhibitory control of GABAergic interneurons in the hippocampus. , 1997, Canadian journal of physiology and pharmacology.

[17]  R. Morgan,et al.  Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures , 2008, Proceedings of the National Academy of Sciences.

[18]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[19]  Peter Somogyi,et al.  Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro , 2000, The Journal of physiology.

[20]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[21]  Attila I Gulyás,et al.  Convergence of excitatory and inhibitory inputs onto CCK‐containing basket cells in the CA1 area of the rat hippocampus , 2004, The European journal of neuroscience.

[22]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[23]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[24]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[25]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[26]  Thomas Klausberger,et al.  Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons , 2012, Hippocampus.

[27]  Takaichi Fukuda,et al.  Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers , 1997, Brain Research.

[28]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  I. Katona,et al.  Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum , 2003, The European journal of neuroscience.

[30]  Giorgio A. Ascoli,et al.  Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus , 2011, Front. Neuroinform..

[31]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[32]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[33]  Ivan Soltesz,et al.  Functional Specificity of Mossy Fiber Innervation of GABAergic Cells in the Hippocampus , 2009, The Journal of Neuroscience.

[34]  Jozsef Csicsvari,et al.  Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity , 2008, Neuron.

[35]  I. Módy,et al.  Selective Reduction of Cholecystokinin-Positive Basket Cell Innervation in a Model of Temporal Lobe Epilepsy , 2010, The Journal of Neuroscience.

[36]  N. Spruston,et al.  Hippocampal Pyramidal Neurons Comprise Two Distinct Cell Types that Are Countermodulated by Metabotropic Receptors , 2012, Neuron.

[37]  T. Freund,et al.  Calbindin D28k-containing nonpyramidal cells in the rat hippocampus: Their immunoreactivity for GABA and projection to the medial septum , 1992, Neuroscience.

[38]  P. Somogyi,et al.  Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores , 2012, Front. Neural Circuits.

[39]  L. Acsády,et al.  Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus , 1996, Neuroscience.

[40]  P. Somogyi,et al.  Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus , 2004, Experimental Brain Research.

[41]  I. Soltesz Diversity in the Neuronal Machine , 2006 .

[42]  T. Freund,et al.  Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum , 2008, The European journal of neuroscience.

[43]  I. Módy,et al.  Synaptic Communication among Hippocampal Interneurons: Properties of Spontaneous IPSCs in Morphologically Identified Cells , 1997, The Journal of Neuroscience.

[44]  K. Rockland,et al.  Rhythmically Active Enkephalin-Expressing GABAergic Cells in the CA1 Area of the Hippocampus Project to the Subiculum and Preferentially Innervate Interneurons , 2008, The Journal of Neuroscience.

[45]  N. Tamamaki,et al.  Complete Axon Arborization of a Single CA3 Pyramidal Cell in the Rat Hippocampus, and its Relationship With Postsynaptic Parvalbumin‐containing Interneurons , 1993, The European journal of neuroscience.

[46]  P. Somogyi,et al.  Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus , 2002, Neuroscience.

[47]  P. Somogyi,et al.  Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. , 2007, Cerebral cortex.

[48]  S. Jinno Structural Organization of Long-Range GABAergic Projection System of the Hippocampus , 2009, Front. Neuroanat..

[49]  T. Kosaka,et al.  Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology , 2006, Neuroscience Research.

[50]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[51]  P. Somogyi,et al.  Metabotropic Glutamate Receptor 8-Expressing Nerve Terminals Target Subsets of GABAergic Neurons in the Hippocampus , 2005, The Journal of Neuroscience.

[52]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[53]  Jozsef Csicsvari,et al.  Complementary Roles of Cholecystokinin- and Parvalbumin-Expressing GABAergic Neurons in Hippocampal Network Oscillations , 2005, The Journal of Neuroscience.

[54]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[55]  P. Somogyi,et al.  Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus , 2004, Hippocampus.

[56]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[57]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[58]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[59]  I. Soltesz,et al.  Distinct Endocannabinoid Control of GABA Release at Perisomatic and Dendritic Synapses in the Hippocampus , 2010, The Journal of Neuroscience.

[60]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[61]  L. Acsády,et al.  Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus , 1996, Neuroscience.

[62]  I. Soltesz,et al.  Neurogliaform and Ivy Cells: A Major Family of nNOS Expressing GABAergic Neurons , 2012, Front. Neural Circuits.

[63]  T. Freund,et al.  Innervation of different peptide-containing neurons in the hippocampus by gabaergic septal afferents , 1990, Neuroscience.

[64]  Z. Borhegyi,et al.  Fast Synaptic Subcortical Control of Hippocampal Circuits , 2009, Science.

[65]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[66]  Marco Capogna,et al.  Neurogliaform Neurons Form a Novel Inhibitory Network in the Hippocampal CA1 Area , 2005, The Journal of Neuroscience.

[67]  P. Golshani,et al.  Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice , 2012, Proceedings of the National Academy of Sciences.

[68]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[69]  Ivan Soltesz,et al.  Neurogliaform cells in the molecular layer of the dentate gyrus as feed‐forward γ‐aminobutyric acidergic modulators of entorhinal–hippocampal interplay , 2011, The Journal of comparative neurology.

[70]  Calvin J. Schneider,et al.  Toward a full-scale computational model of the rat dentate gyrus , 2012, Front. Neural Circuits.

[71]  Simon Chamberland,et al.  Inhibitory control of hippocampal inhibitory neurons , 2012, Front. Neurosci..

[72]  M. Witter,et al.  Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin , 1990, The Journal of comparative neurology.

[73]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[74]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[75]  Takaichi Fukuda,et al.  Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference , 1997, Brain Research.

[76]  Eric Gossett,et al.  Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2015 .

[77]  Z. Borhegyi,et al.  Phase Segregation of Medial Septal GABAergic Neurons during Hippocampal Theta Activity , 2004, The Journal of Neuroscience.

[78]  G. Buzsáki,et al.  Inhibitory CA1-CA3-hilar region feedback in the hippocampus. , 1994, Science.

[79]  Z. Nusser,et al.  Quantal Size Is Independent of the Release Probability at Hippocampal Excitatory Synapses , 2005, The Journal of Neuroscience.

[80]  L. Acsády,et al.  Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus , 1999, Neuroscience.

[81]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[82]  P. Somogyi,et al.  GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat , 2004, The European journal of neuroscience.

[83]  Christophe Bernard,et al.  Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[84]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[85]  Ken Mackie,et al.  Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons , 1999, The Journal of Neuroscience.

[86]  T. Kosaka,et al.  GABAergic neurons containing somatostatin-like immunoreactivity in the rat hippocampus and dentate gyrus , 2004, Experimental Brain Research.

[87]  Riichi Kajiwara,et al.  Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—An anatomical study in the rat , 2008, Hippocampus.

[88]  R. Petralia Diversity in the Neuronal Machine—Order and Variability in Interneuronal Microcircuits, I. Soltesz. Oxford University Press (2006), 238 pp. , 2007 .

[89]  T. F. Freund,et al.  Subpopulations of GABAergic neurons containing parvalbumin, calbindin D28k, and cholecystokinin in the rat hippocampus , 1991, The Journal of comparative neurology.

[90]  M. Danik,et al.  Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity , 2003, The Journal of physiology.

[91]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[92]  T. Kosaka,et al.  GABAergic neurons containing CCK‐8‐like and/or VIP‐like immunoreactivities in the rat hippocampus and dentate gyrus , 1985, The Journal of comparative neurology.

[93]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[94]  P. Somogyi,et al.  Calcium-Permeable AMPA Receptors Provide a Common Mechanism for LTP in Glutamatergic Synapses of Distinct Hippocampal Interneuron Types , 2012, The Journal of Neuroscience.

[95]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[96]  I. Soltesz,et al.  Differential immunoreactivity for alpha-actinin-2, an N-methyl-d-aspartate-receptor/actin binding protein, in hippocampal interneurons , 2001, Neuroscience.

[97]  T. Freund,et al.  Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells , 2001, Neuroscience.

[98]  M. West,et al.  Estimators of the precision of stereological estimates: An example based on the CA1 pyramidal cell layer of rats , 2005, Neuroscience.

[99]  P. Somogyi,et al.  Synaptic target selectivity and input of GABAergic basket and bistratified interneurons in the CA1 area of the rat hippocampus , 1996, Hippocampus.

[100]  Robert J. Morgan,et al.  Regulation of Fast-Spiking Basket Cell Synapses by the Chloride Channel ClC–2 , 2010, Nature Neuroscience.

[101]  C. Köhler Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex , 1985, The Journal of comparative neurology.

[102]  Alex M Thomson,et al.  Physiological and morphological diversity of immunocytochemically defined parvalbumin‐ and cholecystokinin‐positive interneurones in CA1 of the adult rat hippocampus , 2002, The Journal of comparative neurology.

[103]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[104]  G. Maccaferri,et al.  Stratum oriens horizontal interneurone diversity and hippocampal network dynamics , 2005, The Journal of physiology.

[105]  Ivan Soltesz,et al.  Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. , 2005, Journal of neurophysiology.

[106]  M J West,et al.  Neuron numbers in the presubiculum, parasubiculum, and entorhinal area of the rat , 1997, The Journal of comparative neurology.

[107]  T. Freund,et al.  Long-Term Plasticity of Endocannabinoid Signaling Induced by Developmental Febrile Seizures , 2003, Neuron.

[108]  C. Léránth,et al.  Distribution and origin of vesicular glutamate transporter 2‐immunoreactive fibers in the rat hippocampus , 2004, Hippocampus.

[109]  P. Somogyi,et al.  Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus , 1995, The European journal of neuroscience.

[110]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[111]  K. Tóth,et al.  Stratum radiatum giant cells: a type of principal cell in the rat hippocampus , 1998, The European journal of neuroscience.