Cross-validation and other criteria for estimating the regularizing parameter
暂无分享,去创建一个
[1] D.J. Anderson,et al. Optimal Estimation of Contour Properties by Cross-Validated Regularization , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[2] B. R. Hunt,et al. The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.
[3] Aggelos K. Katsaggelos,et al. A regularized iterative image restoration algorithm , 1991, IEEE Trans. Signal Process..
[4] G. Wahba. Spline models for observational data , 1990 .
[5] P. Hall,et al. Common Structure of Techniques for Choosing Smoothing Parameters in Regression Problems , 1987 .
[6] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[7] G. Wahba. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .
[8] Guy Demoment,et al. Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..
[9] G. Wahba. Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[12] G. Wahba. Optimal Smoothing of Density Estimates , 1977 .
[13] R. Mersereau,et al. Optimal estimation of the regularization parameter and stabilizing functional for regularized image restoration , 1990 .
[14] Aggelos K. Katsaggelos,et al. Iterative Image Restoration Algorithms , 1989 .