Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex

The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 Å resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.

[1]  E. Dabbs,et al.  Mutants of Escherichia coli lacking ribosomal protein L11. , 1980, The Journal of biological chemistry.

[2]  A. Parmeggiani,et al.  Mechanism of action of kirromycin-like antibiotics. , 1985, Annual review of microbiology.

[3]  M. Heel,et al.  Exact filters for general geometry three dimensional reconstruction , 1986 .

[4]  Marin van Heel,et al.  Similarity measures between images , 1987 .

[5]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[6]  Harry F. Noller,et al.  Intermediate states in the movement of transfer RNA in the ribosome , 1989, Nature.

[7]  W. Tapprich,et al.  A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. , 1990, The EMBO journal.

[8]  M. Ehrenberg,et al.  Kinetic properties of Escherichia coli ribosomes with altered forms of S12. , 1992, Journal of molecular biology.

[9]  J. Nyborg,et al.  The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. , 1993, Structure.

[10]  R. Hilgenfeld,et al.  Crystal structure of active elongation factor Tu reveals major domain rearrangements , 1993, Nature.

[11]  M. Rodnina,et al.  Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. , 1994, Biochemistry.

[12]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[13]  M van Heel,et al.  The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. , 1995, Structure.

[14]  Dieter Söll,et al.  Trna: Structure, Biosynthesis, and Function , 1995 .

[15]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[16]  T. Pape,et al.  Initial Binding of the Elongation Factor Tu·GTP·Aminoacyl-tRNA Complex Preceding Codon Recognition on the Ribosome (*) , 1996, The Journal of Biological Chemistry.

[17]  M van Heel,et al.  A new generation of the IMAGIC image processing system. , 1996, Journal of structural biology.

[18]  Rolf Hilgenfeld,et al.  An α to β conformational switch in EF-Tu , 1996 .

[19]  S Thirup,et al.  Helix unwinding in the effector region of elongation factor EF-Tu-GDP. , 1996, Structure.

[20]  M. Rodnina,et al.  The "allosteric three-site model" of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[22]  R. Brimacombe,et al.  Arrangement of tRNAs in Pre- and Posttranslocational Ribosomes Revealed by Electron Cryomicroscopy , 1997, Cell.

[23]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[24]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[25]  M. R. Parsons,et al.  Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 A resolution. , 1999, Journal of molecular biology.

[26]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[27]  M van Heel,et al.  The Escherichia coli large ribosomal subunit at 7.5 A resolution. , 1999, Structure.

[28]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[29]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[30]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[31]  O. Uhlenbeck,et al.  Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. , 2000, Biochemistry.

[32]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[33]  H. Noller,et al.  The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. , 2000, Journal of molecular biology.

[34]  J. Frank,et al.  Solution Structure of the E. coli 70S Ribosome at 11.5 Å Resolution , 2000, Cell.

[35]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[36]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[37]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[38]  M. Heel,et al.  Single-particle electron cryo-microscopy: towards atomic resolution , 2000, Quarterly Reviews of Biophysics.

[39]  J. Frank,et al.  Three-dimensional cryoelectron microscopy of ribosomes. , 2000, Methods in enzymology.

[40]  M. Heel,et al.  Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation , 2000, Cell.

[41]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[42]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[43]  M. Rodnina,et al.  Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. , 2001, Annual review of biochemistry.

[44]  R. Hilgenfeld,et al.  Conformational Change of Elongation Factor Tu (EF-Tu) Induced by Antibiotic Binding , 2001, The Journal of Biological Chemistry.

[45]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[46]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[47]  J. Cate,et al.  Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. , 2001, Journal of molecular biology.

[48]  Joachim Frank,et al.  Cryo‐EM reveals an active role for aminoacyl‐tRNA in the accommodation process , 2002, The EMBO journal.

[49]  J. Lake,et al.  The transorientation hypothesis for codon recognition during protein synthesis , 2002, Nature.

[50]  P. Chacón,et al.  Multi-resolution contour-based fitting of macromolecular structures. , 2002, Journal of molecular biology.

[51]  C. Kurland,et al.  Kinetic impairment of restrictive streptomycin-resistant ribosomes , 2004, Molecular and General Genetics MGG.