Strong Laws for Lp-Norms of Empirical and Related Processes

We obtain lim sup and lim inf results for the Lp-norms (1 ≤ p < ∞) of empirical and quantile processes. We prove these results combining theorems for sums of Banach space valued random variables with invariance principles.

[1]  Angus E. Taylor Introduction to functional analysis , 1959 .

[2]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[3]  F. Eicker The Asymptotic Distribution of the Suprema of the Standardized Empirical Processes , 1979 .

[4]  J. Partington,et al.  Introduction to functional analysis , 1959 .

[5]  John H. J. Einmahl,et al.  Strong limit theorems for weighted quantile processes , 1988 .

[6]  A note on small ball probability of a Gaussian process with stationary increments , 1993 .

[7]  D. Mason,et al.  A strong invariance theorem for the tail empirical process , 1988 .

[8]  J. Kiefer Iterated Logarithm Analogues for Sample Quantiles When P n ↓0 , 1985 .

[9]  E. Giné,et al.  Central limit theorems for the wasserstein distance between the empirical and the true distributions , 1999 .

[10]  On the law of the iterated logarithm. I , 1955 .

[11]  M. Csorgo,et al.  On the Distributions of $L_p$ Norms of Weighted Uniform Empirical and Quantile Processes , 1988 .

[12]  On the Law of the Iterated Logarithm in Chungs Form for Functional Spaces , 1980 .

[13]  E. Csáki Some notes on the law of the iterated logarithm for empirical distribution function , 1975 .

[14]  M. Csörgo,et al.  Convergence of weighted partial sums when the limiting distribution is not necessarily Radon , 1999 .

[15]  Qi-Man Shao,et al.  Maximal Inequalities for Partial Sums of $\rho$-Mixing Sequences , 1995 .

[16]  On the law of the iterated logarithm for maxima and minima , 1972 .

[17]  L. Horváth,et al.  Weighted Approximations in Probability and Statistics , 1993 .

[18]  Convergence of integrals of uniform empirical and quantile processes , 1993 .

[19]  D. Jaeschke The Asymptotic Distribution of the Supremum of the Standardized Empirical Distribution Function on Subintervals , 1979 .

[20]  Balrum S. Rajput Gaussian measures on L_p spaces , 1971 .

[21]  Q. Shao,et al.  Estimation of the variance of partial sums for r-mixing random variables , 1995 .

[22]  Barry R. James A Functional Law of the Iterated Logarithm for Weighted Empirical Distributions , 1975 .

[23]  L. Shepp Acknowledgment of Priority: On the Integral of the Absolute Value of the Pinned Wiener Process , 1991 .

[24]  E. Csáki The law of the iterated logarithm for normalized empirical distribution function , 1977 .

[25]  D. Mason,et al.  Normal and Stable Convergence of Integral Functions of the Empirical Distribution Function , 1986 .

[26]  Helen Finkelstein The Law of the Iterated Logarithm for Empirical Distribution , 1971 .

[27]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[28]  D. Mason,et al.  Weighted Empirical and Quantile Processes , 1986 .

[29]  W. Hoeffding On the Centering of a Simple Linear Rank Statistic , 1973 .

[30]  Z. Šidák ON MULTIVARIATE NORMAL PROBABILITIES OF RECTANGLES: THEIR DEPENDENCE ON CORRELATIONS' , 1968 .

[31]  N. O'Reilly On the Weak Convergence of Empirical Processes in Sup-norm Metrics , 1974 .

[32]  G. S. Watson,et al.  Goodness-of-fit tests on a circle. II , 1961 .

[33]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[34]  S. O. Rice,et al.  The Integral of the Absolute Value of the Pinned Wiener Process-- Calculation of Its Probability Density by Numerical Integration , 1982 .

[35]  Wenbo V. Li Small ball probabilities for Gaussian Markov processes under the Lp-norm , 2001 .

[36]  P. Major,et al.  An approximation of partial sums of independent RV's, and the sample DF. II , 1975 .

[37]  C. G. Khatri,et al.  On Certain Inequalities for Normal Distributions and their Applications to Simultaneous Confidence Bounds , 1967 .

[38]  P. Révész,et al.  Strong Approximations of the Quantile Process , 1978 .

[39]  J. A. Cuesta-Albertos,et al.  Tests of goodness of fit based on the $L_2$-Wasserstein distance , 1999 .