Fuzzy clustering algorithms and their application to medical image analysis.

The general problem of data clustering is concerned with the discovery of a grouping structure within a finite number of data points. Fuzzy Clu stering algorithms provide a fuzzy description of the discovered structure. The ma in advantage of this description is that it captures the imprecision encountered w hen describing real-life data. Thus, the user is provided with more information about the st ructure in the data compared to a crisp, non-fuzzy scheme. During the early part of our research, we investigated the po pular Fuzzy c-Means (FCM) algorithm and in particular its problem of being unabl e to correctly identify clusters with grossly different populations. We devised a s uite of benchmark data sets to investigate the reasons for this shortcoming. We fou nd that the shortcoming originates from the formulation of the objective function o f FCM which allows clusters with relatively large population and extent to dominate the solution. This led to a search for a new objective function, which we have indeed for mulated. Subsequently, we derived a new so-called Population Diameter Independent (PDI) algorithm. PDI was tested on the same benchmark data used to study FCM and was found to perform better than FCM. We have also analysed PDI’s behaviour and id entified how it can be further improved. Since image segmentation is fundamentally a clustering pro blem, the next step was to investigate the use of fuzzy clustering techniques for im age segmentation. We have identified the main decision points in this process. Further more, we have used fuzzy clustering to detect the left ventricular blood pool in card i c cine images. Specifically, the images were of the Magnetic Resonance (MR) modality, con taini g blood velocity data as well as tissue density data. We have analysed the rela tive impact of the velocity data in the goal of achieving better accuracy. Our work would be typically used for qualitative analysis of anatomical structures and quantit tive analysis of anatomical measures.

[1]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[2]  Ravi Kothari,et al.  On finding the number of clusters , 1999, Pattern Recognit. Lett..

[3]  E. Backer,et al.  Computer-assisted reasoning in cluster analysis , 1995 .

[4]  D Ruckert Segmentation and tracking in cardiovascular images using geometrically deformable models and templates. , 1998 .

[5]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[6]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[7]  Partha Niyogi,et al.  The informational complexity of learning from examples , 1996 .

[8]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Michael P. Windham,et al.  Cluster Validity for the Fuzzy c-Means Clustering Algorithrm , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Shokri Z. Selim,et al.  A global algorithm for the fuzzy clustering problem , 1993, Pattern Recognit..

[11]  Jacquie Melia,et al.  Anatomy and Physiology in Health and Illness , 1996 .

[12]  Mu-Song Chen,et al.  Fuzzy clustering analysis for optimizing fuzzy membership functions , 1999, Fuzzy Sets Syst..

[13]  D. Kottke Spatially coherent clustering applied to cardiac angiograms , 1992, [1992] Proceedings of the Eighteenth IEEE Annual Northeast Bioengineering Conference.

[14]  D B Longmore,et al.  Functional Aspects of Cardiovascular Nuclear Magnetic Resonance Imaging Techniques and Application , 1993, Circulation.

[15]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[16]  James C. Bezdek,et al.  Repairs to GLVQ: a new family of competitive learning schemes , 1996, IEEE Trans. Neural Networks.

[17]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[18]  Guang-Zhong Yang Exploring in vivo blood flow dynamics , 1998, IEEE Engineering in Medicine and Biology Magazine.

[19]  Witold Pedrycz,et al.  A parametric model for fusing heterogeneous fuzzy data , 1996, IEEE Trans. Fuzzy Syst..

[20]  Hichem Frigui,et al.  A comparison of fuzzy shell-clustering methods for the detection of ellipses , 1996, IEEE Trans. Fuzzy Syst..

[21]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[22]  R. Nevatia,et al.  Perceptual Organization for Scene Segmentation and Description , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[24]  M.C. Clark,et al.  MRI segmentation using fuzzy clustering techniques , 1994, IEEE Engineering in Medicine and Biology Magazine.

[25]  Ute St. Clair,et al.  Fuzzy Set Theory: Foundations and Applications , 1997 .

[26]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[27]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[28]  Hong Yan,et al.  Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition , 1996, Advances in Fuzzy Systems - Applications and Theory.

[29]  Fernando António Leal Pacheco,et al.  Finding the number of natural clusters in groundwater data sets using the concept of equivalence class , 1998 .

[30]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[31]  Azriel Rosenfeld,et al.  The fuzzy geometry of image subsets , 1984, Pattern Recognit. Lett..

[32]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[33]  L. Zadeh,et al.  Probability theory and fuzzy logic are complementary rather than competitive , 1995 .

[34]  Ryszard S. Michalski,et al.  Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[36]  Ryszard S. Michalski,et al.  Conceptual Clustering of Structured Objects: A Goal-Oriented Approach , 1986, Artif. Intell..

[37]  George J. Klir,et al.  Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems - Selected Papers by Lotfi A Zadeh , 1996, Advances in Fuzzy Systems - Applications and Theory.

[38]  Khaled S. Al-Sultan,et al.  Computational experience on four algorithms for the hard clustering problem , 1996, Pattern Recognit. Lett..

[39]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[40]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[41]  James M. Keller,et al.  Quantitative analysis of properties and spatial relations of fuzzy image regions , 1993, IEEE Trans. Fuzzy Syst..

[42]  Ja-Chen Lin,et al.  Real-time and automatic two-class clustering by analytical formulas , 1996, Pattern Recognit..

[43]  William Stanford,et al.  The fuzzy Hough transform-feature extraction in medical images , 1994, IEEE Trans. Medical Imaging.

[44]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Moshe Kam,et al.  The credibilistic fuzzy c means clustering algorithm , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[46]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[47]  Zhaoping Li,et al.  Visual Segmentation without Classification in a Model of the Primary Visual Cortex , 1997 .

[48]  James C. Bezdek,et al.  Optimization of clustering criteria by reformulation , 1995, IEEE Trans. Fuzzy Syst..

[49]  Boudewijn P. F. Lelieveldt,et al.  A new cluster validity index for the fuzzy c-mean , 1998, Pattern Recognit. Lett..

[50]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[51]  M. R. Brito,et al.  Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection , 1997 .

[52]  Bidyut Baran Chaudhuri,et al.  A novel multiseed nonhierarchical data clustering technique , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[53]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[55]  Lawrence O. Hall,et al.  Automatic tumor segmentation using knowledge-based techniques , 1998, IEEE Transactions on Medical Imaging.

[56]  Narendra Ahuja,et al.  Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt , 1989, Comput. Vis. Graph. Image Process..

[57]  E. S. An Introduction to Physiology , 1903, Nature.

[58]  Thomas A. Runkler,et al.  Alternating cluster estimation: a new tool for clustering and function approximation , 1999, IEEE Trans. Fuzzy Syst..

[59]  David J. Marchette,et al.  An analysis of local feature extraction in digital mammography , 1997, Pattern Recognit..

[60]  G. Chatzimavroudis,et al.  MRI techniques for cardiovascular imaging , 1999, Journal of magnetic resonance imaging : JMRI.

[61]  Mohamed A. Ismail,et al.  On-line hierarchical clustering , 1998, Pattern Recognit. Lett..

[62]  Jerry L Prince,et al.  An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities , 1999, Pattern Recognit. Lett..

[63]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[64]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[65]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[66]  Michael Spann,et al.  A new approach to clustering , 1990, Pattern Recognit..

[67]  Brian Everitt,et al.  Graphical Techniques for Multivariate Data. , 1978 .

[68]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[69]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[70]  Douglas H. Fisher,et al.  Iterative Optimization and Simplification of Hierarchical Clusterings , 1996, J. Artif. Intell. Res..

[71]  James C. Bezdek,et al.  Validity-guided (re)clustering with applications to image segmentation , 1996, IEEE Trans. Fuzzy Syst..

[72]  Michael G. Sowa,et al.  Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis , 1998, IEEE Transactions on Medical Imaging.

[73]  Eric W. Tyree,et al.  The use of linked line segments for cluster representation and data reduction , 1999, Pattern Recognit. Lett..

[74]  Amir B. Geva Hierarchical-fuzzy clustering of temporal-patterns and its application for time-series prediction , 1999, Pattern Recognit. Lett..

[75]  D. Hamilton,et al.  Modern outlier detection methods and thier effect on subsequent inference , 1999 .

[76]  A. Roos,et al.  Magnetic Resonance Imaging in Coronary Artery Disease , 2012, Developments in Cardiovascular Medicine.

[77]  Yannis A. Tolias,et al.  Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[78]  Lawrence O. Hall,et al.  An investigation of mountain method clustering for large data sets , 1997, Pattern Recognit..

[79]  Isak Gath,et al.  Data induced metric and fuzzy clustering of non-convex patterns of arbitrary shape , 1997, Pattern Recognit. Lett..

[80]  P. Burger,et al.  Tracking the LV in velocity MR images using fuzzy clustering , 1998 .

[81]  Narendra Ahuja,et al.  Location- and Density-Based Hierarchical Clustering Using Similarity Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Khaled S. Al-Sultan,et al.  A tabu search-based algorithm for the fuzzy clustering problem , 1997, Pattern Recognit..

[83]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[84]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[85]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[86]  Norman Ronald Smith Fast and automatic techniques for 3D visualization of MRI data , 1998 .

[87]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  Yannis A. Tolias,et al.  A fuzzy vessel tracking algorithm for retinal images based on fuzzy clustering , 1998, IEEE Transactions on Medical Imaging.

[89]  Azriel Rosenfeld,et al.  Some experiments in image segmentation by clustering of local feature values , 1979, Pattern Recognit..

[90]  Magnetic resonance of the cardiovascular system , 1986 .

[91]  Earl Cox,et al.  The fuzzy systems handbook , 1994 .

[92]  Jongwoo Kim,et al.  A note on the Gustafson-Kessel and adaptive fuzzy clustering algorithms , 1999, IEEE Trans. Fuzzy Syst..

[93]  David Haussler,et al.  KDD for Science Data Analysis: Issues and Examples , 1996, KDD.

[94]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[95]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[96]  Abdel-Ouahab Boudraa,et al.  Left ventricle automated detection method in gated isotopic ventriculography using fuzzy clustering , 1993, IEEE Trans. Medical Imaging.

[97]  L O Hall,et al.  Medical image analysis with fuzzy models , 1997, Statistical methods in medical research.