Potential role of a navigator gene NAV3 in colorectal cancer

[1]  K. Ovaska,et al.  NAV3 copy number changes and target genes in basal and squamous cell cancers , 2011, Experimental dermatology.

[2]  A. Ranki,et al.  Molecular markers associated with clinical response to bexarotene therapy in cutaneous T-cell lymphoma. , 2011, Acta dermato-venereologica.

[3]  E. Dermitzakis,et al.  Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 , 2010, Nature Genetics.

[4]  K. Ovaska,et al.  Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme , 2010, Genome Medicine.

[5]  J. Komorowski,et al.  Characterization of novel and complex genomic aberrations in glioblastoma using a 32K BAC array. , 2009, Neuro-oncology.

[6]  A. Schäffer,et al.  Evaluating annotations of an Agilent expression chip suggests that many features cannot be interpreted , 2009, BMC Genomics.

[7]  M. Huerta-Reyes,et al.  Human gonadotropin-releasing hormone receptor-activated cellular functions and signaling pathways in extra-pituitary tissues and cancer cells (Review). , 2009, Oncology reports.

[8]  B. Ye,et al.  Contribution of IL23R but not ATG16L1 to Crohn's disease susceptibility in Koreans , 2009, Inflammatory bowel diseases.

[9]  Xi He,et al.  Wnt/beta-catenin signaling: components, mechanisms, and diseases. , 2009, Developmental cell.

[10]  S. Brand Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease , 2009, Gut.

[11]  Howard Y. Chang,et al.  Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression. , 2009, Cancer cell.

[12]  Judy H. Cho,et al.  Erratum: Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study(Nature Genetics (2009) 41 (216220)) , 2009 .

[13]  A. Gill,et al.  Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. , 2009, Endocrine-related cancer.

[14]  Sharmistha Sarkar,et al.  A Two-Step Model for Colon Adenoma Initiation and Progression Caused by APC Loss , 2009, Cell.

[15]  M. Hazar-Rethinam,et al.  E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: implications for cutaneous squamous cell carcinoma formation. , 2009, Cancer research.

[16]  W. Peter Vandertop,et al.  Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes , 2009, Human mutation.

[17]  J. Kere,et al.  IL23R in the Swedish, Finnish, Hungarian and Italian populations: association with IBD and psoriasis, and linkage to celiac disease , 2009, BMC Medical Genetics.

[18]  A. Tordai,et al.  ATG16L1 and IL23 receptor (IL23R) genes are associated with disease susceptibility in Hungarian CD patients. , 2008, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[19]  Adam J Pawson,et al.  Emerging Targets of the GnRH Receptor: Novel Interactions with Wnt Signalling Mediators , 2008, Neuroendocrinology.

[20]  G. Parmigiani,et al.  Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers , 2008, Proceedings of the National Academy of Sciences.

[21]  P. Peltomäki,et al.  Clinicopathological characterization and genomic aberrations in subcutaneous panniculitis-like T-cell lymphoma. , 2008, The Journal of investigative dermatology.

[22]  G. Kociubinski,et al.  IL‐23/IL‐17 immunity as a hallmark of Crohn's disease , 2008, Inflammatory bowel diseases.

[23]  L. Coussens,et al.  Inflaming gastrointestinal oncogenic programming. , 2008, Cancer cell.

[24]  S. Knuutila,et al.  Epigenetic signatures of familial cancer are characteristic of tumor type and family category. , 2008, Cancer research.

[25]  J. Nilson,et al.  Welcoming beta-catenin to the gonadotropin-releasing hormone transcriptional network in gonadotropes. , 2008, Molecular endocrinology.

[26]  T. Molnár,et al.  ATG16L1 and IL-23 receptor (IL-23R) genes are associated with disease susceptibility in Hungarian CD patients , 2008 .

[27]  H. Joensuu,et al.  Cutaneous T‐cell lymphoma‐associated lung cancers show chromosomal aberrations differing from primary lung cancer , 2008, Genes, chromosomes & cancer.

[28]  A. Belayew,et al.  The Helicase-Like Transcription Factor and its implication in cancer progression , 2008, Cellular and Molecular Life Sciences.

[29]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[30]  R. Green,et al.  APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice , 2007, The Journal of cell biology.

[31]  A. Levine,et al.  Mucosal T-cell immunoregulation varies in early and late inflammatory bowel disease , 2007, Gut.

[32]  R. Nusse,et al.  Wnt Signaling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors* , 2006, Journal of Biological Chemistry.

[33]  Xin-Yuan Fu,et al.  Smad4 signalling in T cells is required for suppression of gastrointestinal cancer , 2006, Nature.

[34]  A. Poustka,et al.  Primary cutaneous T-cell lymphomas show a deletion or translocation affecting NAV3, the human UNC-53 homologue. , 2005, Cancer research.

[35]  P. Edwards,et al.  Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  C. Mathew,et al.  Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumors reveals factors that influence delineation of candidate regions. , 2001, Cancer research.

[37]  D. Chung,et al.  The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. , 2000, Gastroenterology.

[38]  S Srivastava,et al.  A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. , 1998, Cancer research.

[39]  P. Polakis The adenomatous polyposis coli (APC) tumor suppressor. , 1997, Biochimica et biophysica acta.

[40]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[41]  S. Devries,et al.  Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. , 1994, The American journal of pathology.

[42]  P. Traber,et al.  Cancer in inflammatory bowel disease. , 1994, The Medical clinics of North America.

[43]  T. Visakorpi,et al.  Improved technique for analysis of formalin-fixed, paraffin-embedded tumors by fluorescence in situ hybridization. , 1994, Cytometry.

[44]  B. Vogelstein,et al.  A genetic model for colorectal tumorigenesis , 1990, Cell.

[45]  Y. Nakamura,et al.  Genetic alterations during colorectal-tumor development. , 1988, The New England journal of medicine.

[46]  G. Pfeifer,et al.  Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. , 2010, Advances in genetics.