Covalency in semiconductor quantum dots

Chemical schemes for the preparation of direct band-gap semiconductor quantum dots have advanced rapidly over the past few years. It is now possible to prepare a variety of III–V semiconductors with a finite size (InP, InAs, GaAs, etc.) and compare their size-dependent properties with the well studied II–VI class of quantum dots (ZnS, CdS, CdSe, etc.). In this Reviews, various physical properties of semiconductor quantum dots are presented within a discussion framework of lattice covalency. Included in the Reviews are discussions of the various chemical synthetic routes for making the particles, as well the electronic structure and the electronic dynamics of nanocrystals.

[1]  K. B. Whaley,et al.  Two-particle calculation of excitonic effects in semiconductor nanocrystals , 1996 .

[2]  Nasser Peyghambarian,et al.  Synthesis and Characterization of InP, GaP, and GaInP2 Quantum Dots , 1995 .

[3]  Takayoshi Kobayashi,et al.  Exciton-LA and -TA phonon couplings in a spherical semiconductor microcrystallite , 1992 .

[4]  K. Jensen,et al.  Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe , 1996 .

[5]  U. Banin,et al.  Quantum confinement and ultrafast dephasing dynamics in InP nanocrystals , 1997 .

[6]  Louis E. Brus,et al.  Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds and Vice Versa, in Inverse Micelle Media , 1990 .

[7]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[8]  François Hache,et al.  Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions , 1993 .

[9]  William L. Wilson,et al.  Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states , 1992 .

[10]  Heath,et al.  Electron energy loss spectroscopy of single silicon nanocrystals: The conduction band. , 1993, Physical review letters.

[11]  Louis E. Brus,et al.  Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state , 1986 .

[12]  J. Heath,et al.  Theory of size-dependent resonance Raman intensities in InP nanocrystals , 1997 .

[13]  J. Heath,et al.  Germanium quantum dots: Optical properties and synthesis , 1994 .

[14]  Peter S. White,et al.  Synthesis of Nanocrystalline Indium Arsenide and Indium Phosphide from Indium(III) Halides and Tris(trimethylsilyl)pnicogens. Synthesis, Characterization, and Decomposition Behavior of I3In.cntdot.P(SiMe3)3 , 1995 .

[15]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[16]  Wilson,et al.  Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. , 1990, Physical review letters.

[17]  Howard Reiss,et al.  The Growth of Uniform Colloidal Dispersions , 1951 .

[18]  Takagahara Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals. , 1993, Physical review letters.

[19]  Louis E. Brus,et al.  Electronic states of semiconductor clusters: Homogeneous and inhomogeneous broadening of the optical spectrum , 1988 .

[20]  S. Tolbert,et al.  High-pressure structural transformations in semiconductor nanocrystals. , 1995, Annual review of physical chemistry.

[21]  Alivisatos,et al.  Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. , 1994, Physical review. B, Condensed matter.

[22]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[23]  J. Heath,et al.  Photophysics of size‐selected InP nanocrystals: Exciton recombination kinetics , 1996 .

[24]  H. Weller SELF-ORGANIZED SUPERLATTICES OF NANOPARTICLES , 1996 .

[25]  G. Medeiros-Ribeiro,et al.  SINGLE-ELECTRON CHARGING AND COULOMB INTERACTION IN INAS SELF-ASSEMBLED QUANTUM DOT ARRAYS , 1996, cond-mat/9608040.

[26]  B. Dunn,et al.  Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals , 1997 .

[27]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[28]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[29]  Robert A. Harris,et al.  Simple interpretation of dephasing in absorption and resonance Raman theory , 1986 .

[30]  J. Heath,et al.  A liquid solution synthesis of single crystal germanium quantum wires , 1993 .

[31]  Uri Banin,et al.  Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots , 1996 .

[32]  Uri Banin,et al.  Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals , 1996 .

[33]  A. Eychmüller,et al.  Fluorescence mechanism of highly monodisperse Q-sized CdS colloids , 1991 .

[34]  A. Alivisatos,et al.  Organometallic Synthesis of GaAs Crystallites Exhibiting Quantum Confinement , 1990 .

[35]  Louis E. Brus,et al.  Luminescence of silicon materials : chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon , 1994 .