Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations

Abstract Plasma microinstabilities, which can be described in the framework of the linear gyrokinetic equations, are routinely computed in the context of stability analyses and transport predictions for magnetic confinement fusion experiments. The GENE code, which solves the gyrokinetic equations, has been coupled to the SLEPc package for an efficient iterative, matrix-free, and parallel computation of rightmost eigenvalues. This setup is presented, including the preconditioner which is necessary for the newly implemented Jacobi–Davidson solver. The fast computation of instabilities at a single parameter set is exploited to make parameter scans viable, that is to compute the solution at many points in the parameter space. Several issues related to parameter scans are discussed, such as an efficient parallelization over parameter sets and subspace recycling.

[1]  Y. Saad,et al.  Inexact newton preconditioning techniques for large symmetric eigenvalue problems , 1998 .

[2]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[3]  Frank Jenko,et al.  Nonlinear interplay of TEM and ITG turbulence and its effect on transport , 2010 .

[4]  Frank Jenko,et al.  Heat and particle transport in a tokamak: advances in nonlinear gyrokinetics , 2005 .

[5]  Masha Sosonkina,et al.  Using the parallel algebraic recursive multilevel solver in modern physical applications , 2004, Future Gener. Comput. Syst..

[6]  Eloy Romero,et al.  A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code , 2010, Euro-Par.

[7]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[8]  R. Morgan Generalizations of davidson's method for computing eigenvalues of large nonsymmetric matrices , 1992 .

[9]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[10]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[11]  Frank Jenko,et al.  The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..

[12]  Frank Jenko,et al.  Fast eigenvalue calculations in a massively parallel plasma turbulence code , 2010, Parallel Comput..

[13]  Alan George,et al.  A Fast Implementation of the Minimum Degree Algorithm Using Quotient Graphs , 1980, TOMS.

[14]  F. Jenko,et al.  Exceptional points in linear gyrokinetics , 2008 .

[15]  Vicente Hernández,et al.  SLEPc: Scalable Library for Eigenvalue Problem Computations , 2002, VECPAR.

[16]  Gregory W. Hammett,et al.  Field‐aligned coordinates for nonlinear simulations of tokamak turbulence , 1995 .

[17]  Eloy Romero,et al.  Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi–Davidson eigensolver , 2011, Concurr. Comput. Pract. Exp..

[18]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[19]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[20]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[21]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[22]  F. Jenko,et al.  Gyrokinetic simulation of collisionless trapped-electron mode turbulence , 2005 .

[23]  Gerard L. G. Sleijpen,et al.  A generalized Jacobi-Davidson iteration method for linear eigenvalue problems , 1998 .

[24]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[25]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .