Retrieval of Polarimetric Azimuthal Angular Characteristics via the Application of Target Decomposition to Spectral Domain Circular SAR Images

In this paper, we discuss the application of polarimetric target decomposition (TD) theorems to circular synthetic aperture radar (CSAR) images to retrieve the polarimetric azimuthal angular characteristics of the targets. In CSAR systems, radar-carrying aircraft moves along a circular path. The antenna beam is pointed toward the center of the circular path during the data acquisition to irradiate the spotlighted area from various azimuthal or aspect angles. Therefore, the resultant polarimetric CSAR images contain information about the polarimetric scattering mechanisms of the targets at each aspect angles. To recover this information, we propose the use of spectral decomposition of CSAR images in combination with several TD algorithms. The spectral domain CSAR images can be viewed as the azimuthal angular spectrum images. Thus, the application of TD algorithms to the spectral domain images is expected to be able to obtain the angular dependence and polarimetric scattering properties of the targets simultaneously. We carried out a simple numerical simulation and an indoor laboratory experiment to validate the proposed TD scheme.

[1]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[2]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[3]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[4]  Alberto Moreira,et al.  Fully Polarimetric High-Resolution 3-D Imaging With Circular SAR at L-Band , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[6]  Akira Ishimaru,et al.  An imaging technique using confocal circular synthetic aperture radar , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[8]  Lars M. H. Ulander,et al.  Synthetic-aperture radar processing using fast factorized back-projection , 2003 .

[9]  Peter F. McGuire,et al.  Target detection in synthetic aperture radar imagery: a state-of-the-art survey , 2013, 1804.04719.

[10]  Gholamreza Akbarizadeh,et al.  A New Statistical-Based Kurtosis Wavelet Energy Feature for Texture Recognition of SAR Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Michael E. Schaepman,et al.  Moving Target Tracking in Single- and Multichannel SAR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Alberto Moreira,et al.  First Airborne Demonstration of Holographic SAR Tomography With Fully Polarimetric Multicircular Acquisitions at L-Band , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Mehrdad Soumekh,et al.  Reconnaissance with slant plane circular SAR imaging , 1996, IEEE Trans. Image Process..

[14]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[15]  Wolfgang-Martin Boerner,et al.  Redevelopment of Kennaugh's target characteristic polarization state theory using the polarization transformation ration formalism for the coherent case , 1989 .

[16]  Peter F. McGuire,et al.  Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review , 2016, IEEE Access.

[17]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[18]  Stefano Tebaldini,et al.  Airborne and satellite SAR tomography: a tool to investigate forests and glaciers structures , 2016, Ann. GIS.

[19]  L. C. Guan,et al.  The applications of computer vision system and tomographic radar imaging for assessing physical properties of food , 2004 .

[20]  Christophe Magnard,et al.  Moving-Target Tracking in Single-Channel Wide-Beam SAR , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[21]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[22]  William L. Cameron,et al.  Simulated polarimetric signatures of primitive geometrical shapes , 1996, IEEE Trans. Geosci. Remote. Sens..

[23]  W. D. Jones,et al.  Keeping cars from crashing , 2001 .

[24]  Ya-Qiu Jin,et al.  Deorientation theory of polarimetric scattering targets and application to terrain surface classification , 2005, IEEE Trans. Geosci. Remote. Sens..

[25]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[26]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[27]  Gholamreza Akbarizadeh,et al.  Unsupervised feature learning based on sparse coding and spectral clustering for segmentation of synthetic aperture radar images , 2015, IET Comput. Vis..

[28]  Laurent Ferro-Famil,et al.  Hyperimage concept: Multidimensional Time-Frequency Analysis applied to SAR imaging , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[29]  M. Soumekh,et al.  3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions , 2003 .

[30]  Thomas L. Ainsworth,et al.  Polarization orientation estimation and applications: a review , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[31]  Jakob van Zyl Synthetic Aperture Radar Polarimetry , 2011 .

[32]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[33]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[34]  Reinhard Feger,et al.  Experimental verification of a 77-GHz synthetic aperture radar system for automotive applications , 2017, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[35]  Laurent Ferro-Famil,et al.  Nonstationary natural media analysis from polarimetric SAR data using a two-dimensional time-frequency decomposition approach , 2005 .

[36]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[37]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[38]  Laurent Ferro-Famil,et al.  Scene characterization using subaperture polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[39]  Gholamreza Akbarizadeh,et al.  A Two-Phase Algorithm Based on Kurtosis Curvelet Energy and Unsupervised Spectral Regression for Segmentation of SAR Images , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Erwin Biebl,et al.  Automotive Synthetic Aperture Radar System Based on 24 GHz Series Sensors , 2018 .

[41]  Laurent Ferro-Famil,et al.  Scatterers characterisation in radar imaging using joint time-frequency analysis and polarimetric coherent decompositions , 2010 .