Free actions on handlebodies

Abstract The equivalence (or weak equivalence) classes of orientation-preserving free actions of a finite group G on an orientable three-dimensional handlebody of genus g ⩾1 can be enumerated in terms of sets of generators of G . They correspond to the equivalence classes of generating n -vectors of elements of G , where n =1+( g −1)/| G |, under Nielsen equivalence (or weak Nielsen equivalence). For Abelian and dihedral G , this allows a complete determination of the equivalence and weak equivalence classes of actions for all genera. Additional information is obtained for other classes of groups. For all G , there is only one equivalence class of actions on the genus g handlebody if g is at least 1+l(G) |G| , where l( G ) is the maximal length of a chain of subgroups of G . There is a stabilization process that sends an equivalence class of actions to an equivalence class of actions on a higher genus, and some results about its effects are obtained.

[1]  A. Miller,et al.  The Symmetries of Genus One Handlebodies , 1991, Canadian Journal of Mathematics.

[2]  Darryl McCullough,et al.  The stable genus increment for group actions on closed 2-manifolds , 1992 .

[3]  The Action of the Automorphism Group of F 2 Upon the A 6 - and PSL(2, 7)-Defining Subgroups of F 2 , 1972 .

[4]  M. J. Dunwoody On T-systems of groups , 1963, Journal of the Australian Mathematical Society.

[5]  A. Miller,et al.  Equivalence and strong equivalence of actions on handlebodies , 1988 .

[6]  P. Hall,et al.  THE EULERIAN FUNCTIONS OF A GROUP , 1936 .

[7]  Darryl McCullough,et al.  Group Actions on Handlebodies , 1989 .

[8]  Robert H. Gilman Finite quotients of the automorphism group of a free group , 1977 .

[9]  Primitive elements in a free group , 1981 .

[10]  Darryl McCullough,et al.  Homeomorphisms of 3-Manifolds With Compressible Boundary , 1986 .

[11]  B. H. Neumann,et al.  On a question of Gaschütz , 1956 .

[12]  Two-generator groups. I. , 1975 .

[13]  Free actions of finite abelian groups on handlebodies , 1997 .

[14]  T-systems of certain finite simple groups , 1993 .

[15]  Large groups of symmetries of handlebodies , 1989 .

[16]  Ka Hin Leung,et al.  Finite quotients of the automorphism group of a free group , 1995 .

[17]  Structure and applications of schreier coset graphs , 1971 .

[18]  R. Lyndon,et al.  Combinatorial Group Theory , 1977 .

[19]  J. Nielsen,et al.  Die Isomorphismengruppe der freien Gruppen , 1924 .

[20]  M. J. Evans Presentations of Groups Involving More Generators than are Necessary , 1993 .

[21]  R. Kulkarni Symmetries of surfaces , 1987 .

[22]  M. Lustig Nielsen Equivalence and Simple‐Homotopy Type , 1991 .

[23]  The action of the automorphism group of ₂ upon the ₆- and (2,7)-defining subgroups of ₂ , 1972 .

[24]  Darryl McCullough,et al.  Orientation-reversing involutions on handlebodies , 1996 .

[25]  B. H. Neumann,et al.  Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen. Erhard Schmidt zum 75. Geburtstag. B. H. und Neumann, Charakteristische Untergruppen , 1950 .

[26]  A. Karrass,et al.  Finite and infinite cyclic extensions of free groups , 1973, Journal of the Australian Mathematical Society.