Improved Jiles–Atherton Model for Least Square Identification Using Sensitivity Function Normalization

We present an improved version of the Jiles-Atherton model for least square identification. We first use a simplified anhysteretic magnetization model to provide simple estimates of the initial parameters. Then we perform a normalization of sensitivity functions to improve the convergence of the Levenberg-Marquardt algorithm, leading to the emergence of optimal parameters. Experimental trials validate our method.

[1]  Alessandro Salvini,et al.  Genetic algorithms and neural networks generalizing the Jiles-Atherton model of static hysteresis for dynamic loops , 2002 .

[2]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[3]  René Billardon,et al.  Experimental analysis of the magnetoelastic anisotropy of a non-oriented silicon iron alloy , 2003 .

[4]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[5]  David Jiles,et al.  A self consistent generalized model for the calculation of minor loop excursions in the theory of hysteresis , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[6]  Amália Iványi,et al.  Parameter identification of Jiles–Atherton model with nonlinear least-square method , 2004 .

[7]  Alessandro Salvini,et al.  A neuro-genetic and time-frequency approach to macromodeling dynamic hysteresis in the harmonic regime , 2003 .

[8]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[9]  D. Jiles,et al.  Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis , 1992 .

[10]  B. Phelps,et al.  Macroscopic models of magnetization , 2000 .

[11]  Hajime Igarashi,et al.  On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics , 1999 .

[12]  K. H. Carpenter Simple models for dynamic hysteresis which add frequency-dependent losses to static models , 1998 .

[13]  Rainer Laur,et al.  Macromodeling of hysteresis phenomena with SPICE , 1997 .

[14]  Andrew D. Brown,et al.  Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm , 2001 .

[15]  Thierry Poinot,et al.  A Methodology for Estimation of Physical Parameters , 2003 .

[16]  Emilio Del Moral Hernandez,et al.  Identification of the Jiles–Atherton model parameters using random and deterministic searches , 2000 .

[17]  David Jiles,et al.  Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops , 1989 .