Flexible film systems: Current understanding and future prospects

The electrical and mechanical properties of metal films on polymer Substrates are of interest for use inflexible electronic devices and sensors. In these Systems, film deformation mechanisms are comparable to those from free-standing films but the influence of the Substrate and the Interface on the film properties is yet to be fully understood. This understanding is critical to further design improvements and advanced in situ characterization holds the promise of making this possible. With the aid of such techniques direct Observation of failure and deformation mechanisms has become possible.

[1]  J. Månson,et al.  Calculation of adhesive and cohesive fracture toughness of a thin brittle coating on a polymer substrate , 2006 .

[2]  Z. Suo,et al.  Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates , 2009 .

[3]  R. Spolenak,et al.  The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis , 2009 .

[4]  Z. Suo,et al.  Metal films on polymer substrates stretched beyond 50 , 2007 .

[5]  J. Vlassak,et al.  The mechanical properties of freestanding electroplated Cu thin films , 2006 .

[6]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[7]  Sigurd Wagner,et al.  Stiff subcircuit islands of diamondlike carbon for stretchable electronics , 2006 .

[8]  Yves Leterrier,et al.  Mechanical analysis of ultrathin oxide coatings on polymer substrates in-situ in a scanning electron microscope , 2003 .

[9]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[10]  C. Motz,et al.  Dislocation-induced crystal rotations in micro-compressed single crystal copper columns , 2008 .

[11]  John A. Rogers,et al.  Mechanics of stretchable inorganic electronic materials , 2009 .

[12]  Zhigang Suo,et al.  The effect of coating in increasing the critical size of islands on a compliant substrate , 2007 .

[13]  John A. Rogers,et al.  Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates , 2008 .

[14]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[15]  A. Kelly,et al.  Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum , 1965 .

[16]  J. R. Patel,et al.  Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films. , 2003, Journal of synchrotron radiation.

[17]  Y. Leterrier Durability of nanosized oxygen-barrier coatings on polymers , 2003 .

[18]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[19]  O. Kraft,et al.  Deformation behavior of thin copper films on deformable substrates , 2001 .

[20]  S. Wagner,et al.  An elastically stretchable TFT circuit , 2004, IEEE Electron Device Letters.

[21]  Joost J. Vlassak,et al.  Mechanical Behavior of Thin Films , 1996 .

[22]  Z. Suo,et al.  Stretchability of thin metal films on elastomer substrates , 2004 .

[23]  M. Sato,et al.  Ti-Ni-Cu shape-memory alloy thin film formed on polyimide substrate , 2008 .

[24]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[25]  Haydn H D Chen,et al.  Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction , 2002 .

[26]  D. Kwon,et al.  Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film , 2003 .

[27]  Robert A. Street,et al.  Jet printing flexible displays , 2006 .

[28]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[29]  Ralph Spolenak,et al.  Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: A study by synchrotron and bulge test techniques , 2008 .

[30]  Sigurd Wagner,et al.  Electronic skin: architecture and components , 2004 .

[31]  Horacio Dante Espinosa,et al.  A methodology for determining mechanical properties of freestanding thin films and MEMS materials , 2003 .

[32]  G. Dehm,et al.  In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. , 2009, Nature materials.

[33]  D. Bahr,et al.  Characterization of flexible ECoG electrode arrays for chronic recording in awake rats , 2008, Journal of Neuroscience Methods.

[34]  Yves Leterrier,et al.  Modeling of multiple cracking and decohesion of a thin film on a polymer substrate , 2006 .

[35]  Johannes Schalko,et al.  Fracture and Delamination of Chromium Thin Films on Polymer Substrates , 2010 .

[36]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[37]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[38]  Marc Legros,et al.  In-situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation , 2006 .

[39]  Jozef Keckes,et al.  Size-independent stresses in Al thin films thermally strained down to −100 °C , 2007 .

[40]  Z. Suo,et al.  Delocalizing strain in a thin metal film on a polymer substrate , 2005 .

[41]  Zhenan Bao,et al.  Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits , 2000 .

[42]  Y. Leterrier,et al.  Evaluation of thin film adhesion to a compliant substrate by the analysis of progressive buckling in the fragmentation test , 2009 .

[43]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[44]  Teng Li,et al.  STRAIN DECONCENTRATION IN THIN FILMS PATTERNED WITH CIRCULAR HOLES , 2009 .

[45]  F. Lv,et al.  Tensile properties of Cr inserted amorphous Co85Zr9Nb6 films deposited on polymer substrate , 2009 .

[46]  Eduard Arzt,et al.  Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films , 2003 .

[47]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[48]  Eduard Arzt,et al.  Small-scale plasticity in thin Cu and Al films , 2003 .

[49]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Mitterer,et al.  Stress evolution in CrN/Cr coating systems during thermal straining , 2008 .

[51]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[52]  Frans Spaepen,et al.  The yield strength of thin copper films on Kapton , 2004 .

[53]  J. Månson,et al.  Evaluation of interfacial stress transfer efficiency by coating fragmentation test , 2007 .

[54]  J. Rogers,et al.  A printable form of silicon for high performance thin film transistors on plastic substrates , 2004 .