Characterising equilibrium selection in global games with strategic complementarities

Global games are widely used to predict behaviour in games with strategic complementarities and multiple equilibria. We establish two results on the global game selection. First, we show that, for any supermodular complete information game, the global game selection is independent of the payoff functions chosen for the gameʼs global game embedding. Second, we give a simple sufficient criterion to derive the selection and establish noise independence in many-action games by decomposing them into games with smaller action sets, to which we may often apply simple criteria. We also report in which small games noise independence may be established by counting the number of players or actions.

[1]  Daisuke Oyama,et al.  Iterated Potential and Robustness of Equilibria , 2006, J. Econ. Theory.

[2]  Daisuke Oyama,et al.  On the Relationship between Robustness to Incomplete Information and Noise-Independent Selection in Global Games , 2011 .

[3]  P. Deane Frontiers of Economic Research , 1990 .

[4]  X. Vives Nash equilibrium with strategic complementarities , 1990 .

[5]  S. Morris,et al.  Global Games: Theory and Applications , 2001 .

[6]  Daisuke Oyama,et al.  Monotone and Local Potential Maximizers in Symmetric 3x3 Supermodular Games , 2009 .

[7]  Takashi Ui,et al.  Robust Equilibria of Potential Games , 2001 .

[8]  C. Berge Topological Spaces: including a treatment of multi-valued functions , 2010 .

[9]  Peter Ockenfels,et al.  Measuring Strategic Uncertainty in Coordination Games , 2004, SSRN Electronic Journal.

[10]  Krzysztof Burdzy,et al.  Shocks and Business Cycles , 2005 .

[11]  Robert J. Weber,et al.  Distributional Strategies for Games with Incomplete Information , 1985, Math. Oper. Res..

[12]  Frank Heinemann,et al.  American Economic Association Unique Equilibrium in a Model of Self-Fulfilling Currency Attacks : Comment , 2015 .

[13]  Itay Goldstein,et al.  Demand Deposit Contracts and the Probability of Bank Runs , 2002 .

[14]  Tijmen R. Daniëls,et al.  Every symmetric 3×3 global game of strategic complementarities has noise-independent selection , 2011 .

[15]  Laurent Mathevet A contraction principle for finite global games , 2010 .

[16]  S. Morris,et al.  Risk and Wealth in a Model of Self-Fulfilling Currency Attacks , 2003 .

[17]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[18]  S. Morris,et al.  Coordination Risk and the Price of Debt , 2002 .

[19]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[20]  X. Vives,et al.  Coordination Failures and the Lender of Last Resort: Was Bagehot Right after All? , 2002 .

[21]  Youngse Kim,et al.  Equilibrium Selection inn-Person Coordination Games , 1996 .

[22]  Jakub Steiner,et al.  Who Matters in Coordination Problems , 2012 .

[23]  A. Rubinstein The Electronic Mail Game: Strategic Behavior Under "Almost Common Knowledge" , 1989 .

[24]  Itay Goldstein,et al.  Strategic Complementarities and the Twin Crises , 2005 .

[25]  Stephen Morris,et al.  Generalized Potentials and Robust Sets of Equilibria , 2003, J. Econ. Theory.

[26]  D. M. Topkis Equilibrium Points in Nonzero-Sum n-Person Submodular Games , 1979 .

[27]  K. Burdzy,et al.  Fast Equilibrium Selection by Rational Players Living in a Changing World , 2001 .

[28]  M. Obstfeld Models of Currency Crises with Self-Fulfilling Features , 1995 .

[29]  Every Symmetric 3 x 3 Global Game of Strategic Complementarities Is Noise Independent , 2010 .

[30]  F. A. Hayek The American Economic Review , 2007 .

[31]  H. Carlsson,et al.  Noisy Equilibrium Selection in Coordination Games , 1997 .

[32]  Kiminori Matsuyama,et al.  An Approach to Equilibrium Selection , 1995 .

[33]  Philip H. Dybvig,et al.  Bank Runs, Deposit Insurance, and Liquidity , 1983, Journal of Political Economy.

[34]  Robert J . Aumann,et al.  28. Mixed and Behavior Strategies in Infinite Extensive Games , 1964 .

[35]  Pratibha Mishra,et al.  Advanced Engineering Mathematics , 2013 .

[36]  D. M. Frankel Payoff Shocks and Equilibrium Selection with Endogenous Flexibility , 2001 .

[37]  Y. Spiegel,et al.  The Choice of Exchange Rate Regime and Speculative Attacks , 2002 .

[38]  Olivier Tercieux,et al.  Contagion in Games with Strategic Complementarities Preliminary and Incomplete , 2007 .

[39]  Debraj Ray What's New in Development Economics? , 2000 .

[40]  Paul R. Milgrom,et al.  Rationalizability, Learning, and Equilibrium in Games with Strategic Complementarities , 1990 .

[41]  R. Nagel,et al.  THE THEORY OF GLOBAL GAMES ON TEST: EXPERIMENTAL ANALYSIS OF COORDINATION GAMES WITH PUBLIC AND PRIVATE INFORMATION , 2004 .

[42]  S. Morris,et al.  The Robustness of Equilibria to Incomplete Information , 1997 .

[43]  Stephen Morris,et al.  P-dominance and belief potential , 2010 .

[44]  Stephen Morris,et al.  Equilibrium Selection in Global Games with Strategic Complementarities , 2001, J. Econ. Theory.

[45]  S. Morris,et al.  Does One Soros Make a Difference? A Theory of Currency Crises with Large and Small Traders , 2001 .

[46]  Roberto Lucchetti,et al.  Convexity and well-posed problems , 2006 .

[47]  Susan Athey,et al.  Single Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information , 1997 .

[48]  Bernardo Guimaraes,et al.  International lending of last resort and moral hazard: A model of IMF's catalytic finance , 2006 .

[49]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[50]  H. Carlsson,et al.  Equilibrium selection in stag hunt games , 1993 .

[51]  John B. Bryant,et al.  A Simple Rational Expectations Keynes-type Model , 1983 .

[52]  J. Huyck,et al.  Tacit Coordination Games, Strategic Uncertainty, and Coordination Failure , 1990 .

[53]  L. Shapley,et al.  Potential Games , 1994 .

[54]  H. Carlsson,et al.  Global Games and Equilibrium Selection , 1993 .

[55]  Ady Pauzner,et al.  Resolving Indeterminacy in Dynamic Settings: The Role of Shocks , 2000 .