Regularizing properties of a class of matrices including the optimal and the superoptimal preconditioners

In this work, given a positive definite matrix A, we introduce a class of matrices related to A, which is obtained by suitably combining projections of its powers onto algebras of matrices simultaneously diagonalized by a unitary transform. After a detailed theoretical study of some spectral properties of the matrices of this class, which suggests their use as regularizing preconditioners, we prove that such matrices can be cheaply computed when the matrix A has a Toeplitz structure. We provide numerical evidence of the advantages coming from the employment of the proposed preconditioners when used in regularizing procedures.

[1]  Lars Eldén,et al.  An Algorithm for the Regularization of Ill-Conditioned, Banded Least Squares Problems , 1984 .

[2]  Raymond H. Chan,et al.  The spectra of super-optimal circulant preconditioned Toeplitz systems , 1991 .

[3]  Raymond H. Chan,et al.  SINE TRANSFORM BASED PRECONDITIONERS FOR SYMMETRIC TOEPLITZ SYSTEMS , 1996 .

[4]  Claudio Estatico,et al.  A Class of Filtering Superoptimal Preconditioners for Highly Ill-Conditioned Linear Systems , 2002 .

[5]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[6]  Stefano Serra Capizzano,et al.  Superoptimal Preconditioned Conjugate Gradient Iteration for Image Deblurring , 2005, SIAM J. Sci. Comput..

[7]  A note on spectra of optimal and superoptimal preconditioned matrices , 2007 .

[8]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[9]  Paola Favati,et al.  On a matrix algebra related to the discrete Hartley transform , 1993 .

[10]  R. Chan,et al.  OPTIMAL TRIGONOMETRIC PRECONDITIONERS FOR ELLIPTIC AND QUEUEING PROBLEMS , 1996 .

[11]  S. Serra-Capizzano A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003 .

[12]  Carmine Di Fiore,et al.  On a set of matrix algebras related to discrete Hartley-type transforms , 2003 .

[13]  Stefano Serra Capizzano,et al.  A Note on the Superoptimal Matrix Algebra Operators , 2002 .

[14]  Daniel Kressner,et al.  Fast Computation of the Matrix Exponential for a Toeplitz Matrix , 2016, SIAM J. Matrix Anal. Appl..

[15]  Enrico Bozzo,et al.  On the Use of Certain Matrix Algebras Associated with Discrete Trigonometric Transforms in Matrix Displacement Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[16]  Paolo Zellini,et al.  Matrix algebras in optimal preconditioning , 2001 .

[17]  Maria Rosaria Russo,et al.  On Krylov projection methods and Tikhonov regularization , 2015 .

[18]  Stefano Serra Capizzano,et al.  Optimal multilevel matrix algebra operators , 2000 .

[19]  Lothar Reichel,et al.  Circulant preconditioners for discrete ill-posed Toeplitz systems , 2016, Numerical Algorithms.

[20]  Paolo Zellini,et al.  Matrix Decompositions Using Displacement Rank and Classes of Commutative Matrix Algebras , 1995 .

[21]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .