Towards MKM in the large: modular representation and scalable software architecture

MKM has been defined as the quest for technologies to manage mathematical knowledge. MKM "in the small" is well-studied, so the real problem is to scale up to large, highly interconnected corpora: "MKM in the large". We contend that advances in two areas are needed to reach this goal. We need representation languages that support incremental processing of all primitive MKM operations, and we need software architectures and implementations that implement these operations scalably on large knowledge bases. We present instances of both in this paper: the MMT framework for modular theory-graphs that integrates meta-logical foundations, which forms the base of the next OMDOC version; and TNTBase, a versioned storage system for XMLbased document formats. TNTBase becomes an MMT database by instantiating it with special MKM operations for MMT.

[1]  Roy T. Fielding,et al.  Uniform Resource Identifier (URI): Generic Syntax , 2005, RFC.

[2]  Florian Rabe,et al.  Representing logics and logic translations , 2008 .

[3]  Michael Kohlhase,et al.  Notations for Living Mathematical Documents , 2008, AISC/MKM/Calculemus.

[4]  Florian Rabe,et al.  Representing Model Theory in a Type-Theoretical Logical Framework , 2009, LSFA.

[5]  Michael Kohlhase,et al.  TNTBase: Versioned Storage for XML , 2009 .

[6]  Florian Rabe,et al.  A Formalized Set-Theoretical Semantics of Isabelle / HOL , 2010 .

[7]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[8]  Robert J. Lempert,et al.  Computer-assisted reasoning , 2001, Comput. Sci. Eng..

[9]  William M. Farmer An Infrastructure for Intertheory Reasoning , 2000, CADE.

[10]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[11]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[12]  Florian Rabe,et al.  A practical module system for LF , 2009, LFMTP '09.

[13]  Andrzej Trybulec,et al.  Computer Assisted Reasoning with MIZAR , 1985, IJCAI.

[14]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[15]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[16]  Roy T. Fielding,et al.  Uniform Resource Identifiers (URI): Generic Syntax , 1998, RFC.

[17]  José Meseguer,et al.  The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability) , 2001, TPHOLs.

[18]  Michael Kohlhase,et al.  XML Format ] Database for [ insert cool application ] , 2009 .

[19]  Peter Hilton,et al.  The Algebra ℝ I , 1970 .

[20]  Till Mossakowski,et al.  The Heterogeneous Tool Set (Hets) , 2007, VERIFY.

[21]  Claudio Sacerdoti Coen,et al.  A Foundational View on Integration Problems , 2011, Calculemus/MKM.

[22]  William M. Farmer,et al.  Little Theories , 1992, CADE.

[23]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[24]  Nicolas Bourbaki,et al.  Theory of sets , 1968 .

[25]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[26]  Carsten Schürmann,et al.  System Description: Delphin - A Functional Programming Language for Deductive Systems , 2008, LFMTP@LICS.

[27]  William M. Farmer,et al.  Mathematical Knowledge Management , 2011, Encyclopedia of Knowledge Management.

[28]  Dieter Hutter,et al.  Towards an Evolutionary Formal Software-Development Using CASL , 1999, WADT.

[29]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[30]  Christoph Lange,et al.  Integrating Web Services into Active Mathematical Documents , 2009, Calculemus/MKM.

[31]  Fulya Horozal,et al.  A case study on formalizing algebra in a module system , 2009, MLPA '09.