Instrumental variables for nonlinearity recovering in block-oriented systems driven by correlated signals

The goal of the paper is to identify the Hammerstein-type systems excited and disturbed by correlated random processes. The problem is semi-parametric in the sense that the nonlinear static characteristic is recovered without prior knowledge about the linear dynamic block, i.e. when its order is unknown. The method is based on the instrumental variables technique, with the instruments generated by input inverse filtering. It is proved that, in contrast to the least-squares-based approach, the proposed algorithm leads to an asymptotically unbiased, strongly consistent estimate. Constructive procedures of instrumental variables generation are given for some popular cases.

[1]  Z. Hasiewicz,et al.  Nonlinear system identification under various prior knowledge , 2008 .

[2]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[3]  Er-Wei Bai An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998, Autom..

[4]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[5]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[6]  Kwan Wong,et al.  Identification of linear discrete time systems using the instrumental variable method , 1967, IEEE Transactions on Automatic Control.

[7]  Fouad Giri,et al.  Identification of block-oriented systems in the presence of nonparametric input nonlinearities of switch and backlash types , 2010, Autom..

[8]  Gerd Vandersteen,et al.  Measurement and identification of nonlinear systems consisting of linear dynamic blocks and one static nonlinearity , 1999, IEEE Trans. Autom. Control..

[9]  Robert Haber Nonlinear System Identification : Input-output Modeling Approach , 1999 .

[10]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[11]  R. Ward,et al.  Notes on the instrumental variable method , 1977 .

[12]  I. Rowe,et al.  Strongly consistent parameter estimation by the introduction of strong instrumental variables , 1974 .

[13]  Zygmunt Hasiewicz Applicability of least-squares to the parameter estimation of large-scale no-memory linear composite systems , 1989 .

[14]  W. Greblicki,et al.  Nonparametric system identification , 2008 .

[15]  J. Cadzow Blind deconvolution via cumulant extrema , 1996, IEEE Signal Process. Mag..

[16]  Feng Ding,et al.  Identification of multi-input systems based on correlation techniques , 2011, Int. J. Syst. Sci..

[17]  Chong-Yung Chi,et al.  Performance of cumulant based inverse filters for blind deconvolution , 1999, IEEE Trans. Signal Process..

[18]  Brett Ninness,et al.  Strong laws of large numbers under weak assumptions with application , 2000, IEEE Trans. Autom. Control..

[19]  Grzegorz Mzyk,et al.  Semiparametric Approach to Hammerstein System Identification , 2009 .

[20]  Zygmunt Hasiewicz,et al.  Hammerstein system identification by non-parametric instrumental variables , 2009, Int. J. Control.

[21]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[22]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[23]  Yongsong Xiao,et al.  Parameter estimation for nonlinear dynamical adjustment models , 2011, Math. Comput. Model..

[24]  Zygmunt Hasiewicz,et al.  Nonlinear system identification by the Haar multiresolution analysis , 1998 .

[25]  Przemyslaw Sliwinski,et al.  Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Zygmunt Hasiewicz,et al.  Combined parametric-nonparametric identification of Hammerstein systems , 2004, IEEE Transactions on Automatic Control.

[27]  Wlodzimierz Greblicki,et al.  Recursive identification of continuous-time Hammerstein systems , 2002, Int. J. Syst. Sci..

[28]  Grzegorz Mzyk Nonlinearity Recovering in Hammerstein System from Short Measurement Sequence , 2009, IEEE Signal Processing Letters.

[29]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.