Ionic conductivity, structural deformation, and programmable anisotropy of DNA origami in electric field.

The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.

[1]  Hao Yan,et al.  Challenges and opportunities for structural DNA nanotechnology. , 2011, Nature nanotechnology.

[2]  Meni Wanunu,et al.  Chemically modified solid-state nanopores. , 2007, Nano letters.

[3]  M. Niederweis,et al.  Nucleotide Discrimination with DNA Immobilized in the MspA Nanopore , 2011, PloS one.

[4]  R. Zhou,et al.  Conformation-dependent DNA attraction. , 2014, Nanoscale.

[5]  A. Balan,et al.  Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. , 2013, ACS nano.

[6]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[7]  K. Schulten,et al.  Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. , 2005, Biophysical journal.

[8]  Silvia Hernández-Ainsa,et al.  DNA origami nanopores: developments, challenges and perspectives. , 2014, Nanoscale.

[9]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[10]  Tim Liedl,et al.  DNA Origami Nanopores , 2013 .

[11]  A. Aksimentiev,et al.  Competitive binding of cations to duplex DNA revealed through molecular dynamics simulations. , 2012, The journal of physical chemistry. B.

[12]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  K. Schulten,et al.  Water-silica force field for simulating nanodevices. , 2006, The journal of physical chemistry. B.

[14]  J. Kjems,et al.  Self-assembly of a nanoscale DNA box with a controllable lid , 2009, Nature.

[15]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[16]  Baoquan Ding,et al.  Engineering DNA self-assemblies as templates for functional nanostructures. , 2014, Accounts of chemical research.

[17]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[18]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[19]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[20]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[21]  Miran Liber,et al.  Developing DNA nanotechnology using single-molecule fluorescence. , 2014, Accounts of chemical research.

[22]  J. Reiner,et al.  Nanoscopic porous sensors. , 2008, Annual review of analytical chemistry.

[23]  J. T. Rodgers,et al.  Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. , 2003, Nucleic acids research.

[24]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[25]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[26]  Silvia Hernández-Ainsa,et al.  DNA origami nanopores for controlling DNA translocation. , 2013, ACS nano.

[27]  A. Aksimentiev,et al.  Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores. , 2013, ACS nano.

[28]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[29]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[30]  Silvia Hernández-Ainsa,et al.  Voltage-dependent properties of DNA origami nanopores. , 2014, Nano letters.

[31]  U. Keyser,et al.  DNA origami nanopores: an emerging tool in biomedicine. , 2013, Nanomedicine.

[32]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[33]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[34]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[35]  Masayuki Endo,et al.  Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy. , 2014, Accounts of chemical research.

[36]  Vivek V. Thacker,et al.  Lipid-Bilayer-Spanning DNA Nanopores with a Bifunctional Porphyrin Anchor , 2013, Angewandte Chemie.

[37]  Ramon Eritja,et al.  DNA origami as a DNA repair nanosensor at the single-molecule level. , 2013, Angewandte Chemie.

[38]  Tim Liedl,et al.  Multiplexed ionic current sensing with glass nanopores. , 2013, Lab on a chip.

[39]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[40]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[41]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[42]  Sheereen Majd,et al.  Controlling protein translocation through nanopores with bio-inspired fluid walls , 2011 .

[43]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[44]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[45]  Robert D. Skeel,et al.  Correcting mesh-based force calculations to conserve both energy and momentum in molecular dynamics simulations , 2007, J. Comput. Phys..

[46]  Hao Yan,et al.  DNA Origami: A Quantum Leap for Self‐Assembly of Complex Structures , 2012 .

[47]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[48]  Cees Dekker,et al.  Distinguishing single- and double-stranded nucleic acid molecules using solid-state nanopores. , 2009, Nano letters.

[49]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[50]  Aleksei Aksimentiev,et al.  Electro-osmotic screening of the DNA charge in a nanopore. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Juhyoun Kwak,et al.  Ion-beam sculpting at nanometre length scales , 2001 .

[52]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[53]  Jejoong Yoo,et al.  Improved Parametrization of Li+, Na+, K+, and Mg2+ Ions for All-Atom Molecular Dynamics Simulations of Nucleic Acid Systems , 2012 .

[54]  S. Howorka,et al.  Self-assembled DNA nanopores that span lipid bilayers. , 2013, Nano letters.

[55]  D. Sept,et al.  Single-particle characterization of Aβ oligomers in solution. , 2012, ACS nano.

[56]  Stefan Howorka,et al.  Nanopore Analytics: Sensing of Single Molecules , 2009 .

[57]  M. Drndić,et al.  Nanopore analysis of individual RNA/antibiotic complexes. , 2011, ACS nano.

[58]  Jejoong Yoo,et al.  In situ structure and dynamics of DNA origami determined through molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[59]  Minchen Chien,et al.  PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis , 2012, Scientific Reports.

[60]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[61]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[62]  Vivek V. Thacker,et al.  Lipid-coated nanocapillaries for DNA sensing. , 2013, The Analyst.

[63]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[64]  A. Aksimentiev,et al.  Exploring transmembrane transport through α -hemolysin with grid-steered molecular dynamics , 2007 .

[65]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[66]  Nicholas A. W. Bell,et al.  Nanopores formed by DNA origami: A review , 2014, FEBS letters.

[67]  J. M. Scholtz,et al.  Interactions of peptides with a protein pore. , 2005, Biophysical journal.

[68]  Arvind Balijepalli,et al.  The effects of diffusion on an exonuclease/nanopore-based DNA sequencing engine. , 2012, The Journal of chemical physics.

[69]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[70]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[71]  Cees Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[72]  Cees Dekker,et al.  Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. , 2010, Nature nanotechnology.

[73]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[74]  R. Bashir,et al.  Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore , 2011, Biomedical microdevices.

[75]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.