Mechanisms of Cooperativity and Allosteric Regulation in Proteins

Preface 1. Introduction 2. Haemoglobin: Dependence of allosteric equilibrium on spin state and coordination of the haem iron 3. Haemocyanin: Dependence of allosteric equilibrium on coordination and valency of a binuclear copper complex 4. Haemerythrin: Cooperativity in a binuclear iron complex 5. Glycogen phosphorylase: Control of glycolysis 6. Phosphofructokinase: Further control of glycolysis 7. Feedback inhibition of a biosynthetic pathway: Aspartate Transcarbamoylase 8. Control of nitrogen metabolism: Glutamine synthetase 9. Cooperativity and feedback inhibition without change of quaternary structure: The "trp" and "met" repressors of E. Coli 10. Immunoglobulins: Cooperative binding to multivalent antigens 11. Allosteric membrane proteins.

[1]  Richard Earl Dickerson,et al.  Hemoglobin : structure, function, evolution, and pathology , 1983 .

[2]  W. Lipscomb,et al.  Interactions of phosphate ligands with Escherichia coli aspartate carbamoyltransferase in the crystalline state. , 1982, Journal of molecular biology.

[3]  M. Ptashne A Genetic Switch , 1986 .

[4]  P. Evans,et al.  Mutations in the active site of Escherichia coli phosphofructokinase , 1987, Nature.

[5]  P. N. Unwin,et al.  Two configurations of a channel-forming membrane protein , 1984, Nature.

[6]  I. K. Robinson,et al.  Structure of the expanded state of tomato bushy stunt virus , 1982, Nature.

[7]  S. Lippard,et al.  Reversible protonation of the oxo bridge in a hemerythrin model compound. Synthesis, structure, and properties of (.mu.-hydroxo)bis(.mu.-acetato)bis[hydrotris(1-pyrazolyl)borato]diiron(III) [(HB(pz)3)Fe(OH)(O2CCH3)2Fe(HB(pz)3)2]+ , 1984 .

[8]  J. Gerhart,et al.  Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. , 1968, Biochemistry.

[9]  F. Karush,et al.  Antibody affinity. VII. Multivalent interaction of anti-lactoside antibody. , 1974, Journal of immunology.

[10]  G. P. Hess,et al.  Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[11]  H. Buc,et al.  [11] Phosphofructokinases from Escherichia coli , 1982 .

[12]  Catherine L. Lawson,et al.  The three-dimensional structure of trp repressor , 1985, Nature.

[13]  M. Perutz,et al.  An x-ray study of azide methaemoglobin. , 1966, Journal of molecular biology.

[14]  P. Youderian,et al.  DNA specificity determinants of Escherichia coli tryptophan repressor binding. , 1987, Genes & development.

[15]  R. Schleif,et al.  DNA binding by proteins. , 1988, Science.

[16]  D. Caspar,et al.  ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE. , 1963, Advances in protein chemistry.

[17]  R. Frankel,et al.  Assembly and characterization of an accurate model for the diiron center in hemerythrin , 1984 .

[18]  G. K. Ackers,et al.  Effects of protons on the oxygenation-linked subunit assembly in human hemoglobin , 1984 .

[19]  R. Huber,et al.  Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. , 1984, Journal of molecular biology.

[20]  W. DeGrado,et al.  Synthetic amphiphilic peptide models for protein ion channels. , 1988, Science.

[21]  Jean-Paul Renaud,et al.  The role of the distal histidine in myoglobin and haemoglobin , 1988, Nature.

[22]  K. V. van Holde,et al.  Identical linkage and cooperativity of oxygen and carbon monoxide binding to Octopus dofleini hemocyanin. , 1989, Biochemistry.

[23]  E. Kantrowitz,et al.  A possible model for the concerted allosteric transition in Escherichia coli aspartate transcarbamylase as deduced from site-directed mutagenesis studies. , 1988, Biochemistry.

[24]  Julius Rebek,et al.  Allosteric effects: structural and thermodynamic origins of binding in cooperativity in a subunit model , 1983 .

[25]  M Karplus,et al.  X-ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 A resolution. , 1986, Journal of molecular biology.

[26]  K. Miller Oxygen equilibria of Octopus dofleini hemocyanin. , 1985, Biochemistry.

[27]  O. Jardetzky,et al.  NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding. , 1989, Biochemistry.

[28]  J. Changeux,et al.  Allosteric proteins and cellular control systems. , 1963, Journal of molecular biology.

[29]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[30]  K. Madyastha,et al.  Development of a Specific Anti-leukaemic Serum for the Treatment of Leukaemia in Clinics , 1971, Nature.

[31]  M Karplus,et al.  Hemoglobin tertiary structural change on ligand binding. Its role in the co-operative mechanism. , 1983, Journal of molecular biology.

[32]  Ludovic Jullien,et al.  The “chundle” approach to molecular channels synthesis of a macrocycle-based molecular bundle , 1988 .

[33]  J. Drenth,et al.  Subunit composition, x-ray diffraction, amino acid analysis and oxygen binding behaviour of Panulirus interruptus hemocyanin. , 1975, Journal of molecular biology.

[34]  C Chothia,et al.  Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. , 1979, Journal of molecular biology.

[35]  S. Sprang,et al.  Structural changes in glycogen phosphorylase induced by phosphorylation , 1988, Nature.

[36]  Fritz Eckstein,et al.  Nucleic acids and molecular biology , 1987 .

[37]  H. K. Schachman,et al.  Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. , 1989, The Journal of biological chemistry.

[38]  J. Rosenberg,et al.  Kinked DNA in crystalline complex with EcoRI endonuclease , 1984, Nature.

[39]  R. Gunsalus,et al.  Intracellular Trp repressor levels in Escherichia coli , 1986, Journal of bacteriology.

[40]  J. Gouaux,et al.  Three-dimensional structure of carbamoyl phosphate and succinate bound to aspartate carbamoyltransferase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Thomas M. Fyles,et al.  Biomimetic ion transport: a functional model of a unimolecular ion channel , 1989 .

[42]  J. Carey,et al.  Gel retardation at low pH resolves trp repressor-DNA complexes for quantitative study. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Lipscomb,et al.  Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6-A resolution. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[44]  H K Schachman,et al.  Can a simple model account for the allosteric transition of aspartate transcarbamoylase? , 1988, The Journal of biological chemistry.

[45]  D. Eisenberg,et al.  Refined atomic model of glutamine synthetase at 3.5 A resolution. , 1989, The Journal of biological chemistry.

[46]  C. Yanofsky,et al.  Mutational studies with the trp repressor of Escherichia coli support the helix-turn-helix model of repressor recognition of operator DNA. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Yanofsky,et al.  Purification and characterization of trp aporepressor. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[49]  W. Lipscomb,et al.  Crystallographic Determination of Symmetry of Aspartate Transcarbamylase , 1968, Nature.

[50]  P. Wright,et al.  Assignment of resonances in the 1H nuclear magnetic resonance spectrum of the carbon monoxide complex of sperm whale myoglobin by phase-sensitive two-dimensional techniques. , 1987, Journal of molecular biology.

[51]  H. K. Schachman,et al.  Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Sprang,et al.  Domain separation in the activation of glycogen phosphorylase a. , 1989, Science.

[53]  J. Miller,et al.  Detection and isolation of the repressor protein for the tryptophan operon of Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T. Takagi,et al.  The structure of arthropod hemocyanins. , 1985, Science.

[55]  A. Szabó,et al.  Kinetics of hemoglobin and transition state theory. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. K. Schachman,et al.  Homotropic effects in aspartate transcarbamoylase. What happens when the enzyme binds a single molecule of the bisubstrate analog N-phosphonacetyl-L-aspartate? , 1985, Journal of molecular biology.

[57]  H. K. Schachman,et al.  Allosteric regulation of aspartate transcarbamoylase. Changes in the sedimentation coefficient promoted by the bisubstrate analogue N-(phosphonacetyl)-L-aspartate. , 1977, Biochemistry.

[58]  F. Karush The Affinity of Antibody: Range, Variability, and the Role of Multivalence , 1978 .

[59]  M. Perutz,et al.  Interactions between the quaternary structure of the globin and the spin state of the heme in ferric mixed spin derivatives of hemoglobin. , 1978, Biochemistry.

[60]  S. Oiki,et al.  M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[61]  N. Kallenbach,et al.  Hydrogen exchange and structural dynamics of proteins and nucleic acids , 1983, Quarterly Reviews of Biophysics.

[62]  W. Lipscomb,et al.  Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. , 1988, Journal of molecular biology.

[63]  Ben F. Luisi,et al.  Stereochemistry of cooperative mechanisms in hemoglobin , 1987 .

[64]  J. Kilmartin Influence of DPG on the bohr effect of human hemoglobin , 1974 .

[65]  M. S. Chapman,et al.  Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO. , 1987, Cold Spring Harbor symposia on quantitative biology.

[66]  A. Joachimiak,et al.  Crystal structure of trp represser/operator complex at atomic resolution , 1988, Nature.

[67]  J. J. Breen,et al.  Direct measurement of the pK values of an alkaline Bohr group in human hemoglobin. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[68]  L. Johnson,et al.  The allosteric transition of glycogen phosphorylase , 1989, Nature.

[69]  L. Sieker,et al.  Active site structures of deoxyhemerythrin and oxyhemerythrin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[70]  G. Butler,et al.  Tobacco mosaic virus protein aggregation and the virus assembly. , 1977, Advances in protein chemistry.

[71]  G. Stamatoyannopoulos,et al.  The molecular basis of blood diseases , 1987 .

[72]  A. Joachimiak,et al.  The structural basis for the interaction between L-tryptophan and the Escherichia coli trp aporepressor. , 1987, The Journal of biological chemistry.

[73]  N. Ellerton,et al.  Hemocyanin--a current perspective. , 1983, Progress in biophysics and molecular biology.

[74]  D. Eisenberg,et al.  Glutamine synthetase forms three- and seven-stranded helical cables. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[75]  H. K. Schachman,et al.  Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Y. Sugita,et al.  The self-association and oxygen equilibrium of hemoglobin from the lamprey, Entosphenus japonicus. , 1973, The Journal of biological chemistry.

[77]  N. Unwin,et al.  Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes , 1988, Nature.

[78]  E. Eisenstein,et al.  Changes in stability and allosteric properties of aspartate transcarbamoylase resulting from amino acid substitutions in the zinc-binding domain of the regulatory chains. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[79]  J. Fettinger,et al.  Structural characterization of a sterically encumbered iron(II) porphyrin CO complex , 1989 .

[80]  Alan R. Fersht,et al.  Structure and activity of the tyrosy1-tRNA synthetase: the hydrogen bond in catalysis and specificity , 1986, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[81]  A. Trautmann A comparative study of the activation of the cholinergic receptor by various agonists , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[82]  W. Lipscomb,et al.  Escherichia coli aspartate transcarbamylase: the relation between structure and function. , 1988, Science.

[83]  M. Brunori,et al.  Kinetic control of co-operativity in the oxygen binding of Panulirus interruptus hemocyanin. , 1977, Journal of molecular biology.

[84]  J. Bonaventura,et al.  Allosteric modulation of Callinectes sapidus hemocyanin by binding of L-lactate. , 1984, Biochemistry.

[85]  Christopher A. Reed,et al.  A deoxymyoglobin model with a sterically unhindered axial imidazole , 1988 .

[86]  T. Steitz,et al.  Glucose-induced conformational change in yeast hexokinase. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[87]  J. Knowles Enzyme-catalyzed phosphoryl transfer reactions. , 1980, Annual review of biochemistry.

[88]  A. Pardee,et al.  Production and Crystallization of Aspartate Transcarbamylase , 1960 .

[89]  Y. Shirakihara,et al.  Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. , 1988, Journal of molecular biology.

[90]  N. Unwin,et al.  Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes , 1988, The Journal of cell biology.

[91]  H. K. Schachman,et al.  Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. , 1976, Biochemistry.

[92]  The assembly of a virus. , 1978, Scientific American.

[93]  B. Potter,et al.  The stereochemical course of phosphoryl transfer catalysed by Bacillus stearothermophilus and rabbit skeletal-muscle phosphofructokinase with a chiral [16O,17O,18O]phosphate ester. , 1981, The Biochemical journal.

[94]  M. Perutz Stereochemistry of cooperative effects in haemoglobin. , 1970, Nature.

[95]  P. Abelson Amino acid biosynthesis in Escherichia coli: isotopic competition with C14-glucose. , 1954, The Journal of biological chemistry.

[96]  J P Changeux,et al.  Allosteric interactions in aspartate transcarbamylase. 3. Interpretation of experimental data in terms of the model of Monod, Wyman, and Changeux. , 1968, Biochemistry.

[97]  A. Fersht,et al.  Conversion of allosteric inhibition to activation in phosphofructokinase by protein engineering , 1987, Nature.

[98]  W. Kidd,et al.  Relative and Latitudinal Motion of Atlantic Hot Spots , 1973, Nature.

[99]  J Witz,et al.  Divalent ion-dependent reversible swelling of tomato bushy stunt virus and organization of the expanded virion. , 1982, Journal of molecular biology.

[100]  J. Lamy,et al.  Octopus dofleini hemocyanin: structure of the seven-domain polypeptide chain , 1987 .

[101]  J. Kendrew,et al.  Comparison Between the Amino-Acid Sequences of Sperm Whale Myoglobin and of Human Hæmoglobin , 1961, Nature.

[102]  M. Karplus,et al.  Analysis of proton release in oxygen binding by hemoglobin: implications for the cooperative mechanism. , 1988, Biochemistry.

[103]  A Merli,et al.  Reactivity of ferric Aplysia and sperm whale myoglobins towards imidazole. X-ray and binding study. , 1982, Journal of molecular biology.

[104]  M. Brunori,et al.  Multiple linkage in Panulirus interruptus hemocyanin. , 1979, Biochemistry.

[105]  M. Perutz,et al.  Identification of residues contributing to the Bohr effect of human haemoglobin. , 1980, Journal of molecular biology.

[106]  J. L. Smith,et al.  Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. , 1987, Journal of molecular biology.

[107]  David Eisenberg,et al.  Novel subunit—subunit interactions in the structure of glutamine synthetase , 1986, Nature.

[108]  S. Sprang,et al.  Structure of maltoheptaose by difference Fourier methods and a model for glycogen. , 1982, Journal of molecular biology.

[109]  K. Namba,et al.  Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. , 1989, Journal of molecular biology.

[110]  J. Olson,et al.  Structure of myoglobin-ethyl isocyanide. Histidine as a swinging door for ligand entry. , 1989, Journal of molecular biology.

[111]  A. Lesk,et al.  Helix movements in proteins , 1985 .

[112]  Aaron Klug,et al.  ‘Zinc fingers’: a novel protein motif for nucleic acid recognition , 1987 .

[113]  R. Fletterick,et al.  The structures and related functions of phosphorylase a. , 1980, Annual review of biochemistry.

[114]  J. Changeux,et al.  Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the beta and delta chains. , 1987, Biochemistry.

[115]  K. Weber New Structural Model of E. coli Aspartate Transcarbamylase and the Amino-acid Sequence of the Regulatory Polypeptide Chain , 1968, Nature.

[116]  J. Changeux,et al.  The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel , 1987 .

[117]  S. Matsukawa,et al.  Quantitative evaluation for the role of beta 146 His and beta 143 His residues in the Bohr effect of human hemoglobin in the presence of 0.1 M chloride ion. , 1984, The Journal of biological chemistry.

[118]  H. K. Schachman,et al.  Allosteric regulation of aspartate transcarbamoylase. Analysis of the structural and functional behavior in terms of a two-state model. , 1977, Biochemistry.

[119]  R. Briehl The Relation between the Oxygen Equilibrium and Aggregation of Subunits in Lamprey Hemoglobin , 1963 .

[120]  R. Staden,et al.  Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits , 1978, Nature.

[121]  C. Manwell Oxygen Equilibrium of Brachiopod Lingula Hemerythrin , 1960, Science.

[122]  D. McGeoch,et al.  Synthesis of tryptophan operon RNA in a cell-free system. , 1973, Nature: New biology.

[123]  M. Perutz Stereochemistry of Cooperative Effects in Haemoglobin: Haem–Haem Interaction and the Problem of Allostery , 1970, Nature.

[124]  D. Stuart,et al.  Substrate-cofactor interactions for glycogen phosphorylase b: a binding study in the crystal with heptenitol and heptulose 2-phosphate. , 1984, Biochemistry.

[125]  L. Rossi-Bernardi,et al.  The intermediate compounds between human hemoglobin and carbon monoxide at equilibrium and during approach to equilibrium. , 1986, The Journal of biological chemistry.

[126]  E. Solomon,et al.  Spectroscopic studies of the binuclear ferrous active site of deoxyhemerythrin: coordination number and probable bridging ligands for the native and ligand bound forms , 1987 .

[127]  A. Joachimiak,et al.  The crystal structure of trp aporepressor at 1.8 Å shows how binding tryptophan enhances DNA affinity , 1987, Nature.

[128]  G. Zampighi,et al.  Structure of the junction between communicating cells , 1980, Nature.

[129]  H. K. Schachman,et al.  Allosteric regulation of aspartate transcarbamoylase. Effect of active site ligands on the reactivity of sulfhydryl groups of the regulatory subunits. , 1977, Biochemistry.

[130]  J. L. Crawford,et al.  Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. , 1982, Journal of molecular biology.

[131]  E. Kantrowitz,et al.  Structural consequences of the replacement of Glu239 by Gln in the catalytic chain of Escherichia coli aspartate transcarbamylase. , 1990, Journal of molecular biology.

[132]  D M Crothers,et al.  The influence of polyvalency on the binding properties of antibodies. , 1972, Immunochemistry.

[133]  J. Gerhart,et al.  The enzymology of control by feedback inhibition. , 1962, The Journal of biological chemistry.

[134]  J. Carey trp repressor arms contribute binding energy without occupying unique locations on DNA. , 1989, The Journal of biological chemistry.

[135]  P. Vachette,et al.  Quaternary structure changes in aspartate transcarbamylase studied by X-ray solution scattering. Signal transmission following effector binding. , 1985, Journal of molecular biology.

[136]  K. Imai Allosteric Effects in Haemoglobin , 1982 .

[137]  M. Perutz Control by phosphorylation , 1988, Nature.

[138]  Benno P. Schoenborn,et al.  Neutron diffraction reveals oxygen–histidine hydrogen bond in oxymyoglobin , 1981, Nature.

[139]  P. Evans,et al.  Active-site mutants altering the cooperativity of E. coliphosphofructokinase , 1990, Nature.

[140]  P. Evans,et al.  Structure and control of phosphofructokinase from Bacillus stearothermophilus , 1979, Nature.

[141]  E. Stern,et al.  The active site of hemerythrin as determined by X-ray absorption fine structure. , 1988, Biochemistry.

[142]  W. Hendrickson,et al.  Structure of lamprey haemoglobin. , 1971, Nature: New biology.

[143]  S. Sprang,et al.  Glycogen phosphorylase structures and function , 1982 .

[144]  M. Buehner,et al.  The role of pyridoxal 5'-phosphate in glycogen phosphorylase catalysis. , 1990, Biochemistry.

[145]  H. Lester,et al.  Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. , 1988, Science.

[146]  E. Kantrowitz,et al.  Relationship between domain closure and binding, catalysis, and regulation in Escherichia coli aspartate transcarbamylase. , 1988, Biochemistry.

[147]  A. Fersht,et al.  Site-directed mutagenesis in the effector site of Escherichia coli phosphofructokinase. , 1987, Biochemistry.

[148]  M. Perutz,et al.  Influence of quaternary structure of the globin on thermal spin equilibria in different methemoglobin derivatives. , 1978, Biochemistry.

[149]  W. Lipscomb,et al.  2.5 A structure of aspartate carbamoyltransferase complexed with the bisubstrate analog N-(phosphonacetyl)-L-aspartate. , 1987, Journal of molecular biology.

[150]  H. K. Schachman,et al.  Analysis of the ligand-promoted global conformational change in aspartate transcarbamoylase. Evidence for a two-state transition from boundary spreading in sedimentation velocity experiments. , 1989, Journal of molecular biology.

[151]  H. Buc,et al.  Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. , 1968, Journal of molecular biology.

[152]  W. Hol,et al.  Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocyanins. Possible implications for the evolution of oxygen transport proteins. , 1989, Journal of molecular biology.

[153]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[154]  J. Philo,et al.  Quaternary structure has little influence on spin states in mixed-spin human methemoglobins. , 1985, Biochemistry.

[155]  H. E. Umbarger,et al.  Isoleucine and valine metabolism in Escherichia coli. VII. A negative feedback mechanism controlling isoleucine biosynthesis. , 1958, The Journal of biological chemistry.

[156]  F. Crick,et al.  THE THEORY OF INTER-ALLELIC COMPLEMENTATION. , 1964, Journal of molecular biology.

[157]  S. Sligar,et al.  Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. , 1989, The Journal of biological chemistry.

[158]  M. Perutz,et al.  LR16, a compound with potent effects on the oxygen affinity of hemoglobin, on blood cholesterol, and on low density lipoprotein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[159]  E. Kantrowitz,et al.  Function of arginine-234 and aspartic acid-271 in domain closure, cooperativity, and catalysis in Escherichia coli aspartate transcarbamylase. , 1988, Biochemistry.

[160]  C. Lawson,et al.  The structure of trp pseudorepressor at 1.65Å shows why indole propionate acts as a trp 'inducer' , 1988, Nature.

[161]  G. Louie,et al.  Allosteric energy at the hemoglobin beta chain C terminus studied by hydrogen exchange. , 1988, Journal of molecular biology.

[162]  T. Steitz,et al.  Crystal lattice packing is important in determining the bend of a DNA dodecamer containing an adenine tract. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[163]  D. Eisenberg,et al.  New crystal forms of glutamine synthetase and implications for the molecular structure. , 1978, Journal of molecular biology.

[164]  C. Yanofsky,et al.  Regulation of in vitro transcription of the tryptophan operon by purified RNA polymerase in the presence of partially purified repressor and tryptophan. , 1973, Nature: New biology.

[165]  J. Baldwin Structure and function of haemoglobin. , 1975, Progress in biophysics and molecular biology.

[166]  J. Wyman,et al.  Nesting: hierarchies of allosteric interactions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[167]  M. Doyle,et al.  New twists on an old story: hemoglobin. , 1988, Trends in biochemical sciences.

[168]  Zygmunt Derewenda,et al.  Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding , 1988, Nature.

[169]  W. T. Elam,et al.  An x-ray absorption study of the binuclear iron center in deoxyhemerythrin , 1983 .

[170]  Z Otwinowski,et al.  Flexibility of the DNA‐binding domains of trp repressor , 1988, Proteins.

[171]  B. Shaanan,et al.  Structure of human oxyhaemoglobin at 2.1 A resolution. , 1983, Journal of molecular biology.

[172]  J. Cann,et al.  Boundary spreading in sedimentation velocity experiments on partially liganded aspartate transcarbamoylase. A ligand-mediated isomerization. , 1989, Journal of molecular biology.

[173]  Max F. Perutz,et al.  Hemoglobin as a receptor of drugs and peptides: x-ray studies of the stereochemistry of binding , 1986 .

[174]  Christopher A. Reed,et al.  Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins , 1981 .

[175]  A. Pardee,et al.  Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. , 1956, The Journal of biological chemistry.

[176]  S. Englander,et al.  Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence. , 1983, Biochemistry.

[177]  J. Bonaventura,et al.  Carbon monoxide binding by hemocyanins of Limulus polyphemus, Busycon carica, and Callinectes sapidus , 1974 .

[178]  Julius Rebek,et al.  Allosterische Effekte: Bindungskooperativität in einer Modellverbindung mit Untereinheiten† , 1981 .

[179]  J. Hajdu,et al.  Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b. , 1987, The EMBO journal.

[180]  A. Arnone X-ray Diffraction Study of Binding of 2,3-Diphosphoglycerate to Human Deoxyhaemoglobin , 1972, Nature.

[181]  D. Koshland,et al.  Comparison of experimental binding data and theoretical models in proteins containing subunits. , 1966, Biochemistry.

[182]  E. Solomon,et al.  Cooperativity in oxygen binding to Lingula reevii hemerythrin: spectroscopic comparison to the sipunculid hemerythrin coupled binuclear iron active site , 1983 .

[183]  M. Perutz,et al.  Regulation of oxygen affinity of hemoglobin: influence of structure of the globin on the heme iron. , 1979, Annual review of biochemistry.

[184]  J. Sanders-Loehr,et al.  Resonance Raman study of the .mu.-oxo-bridged binuclear iron center in oxyhemerythrin , 1984 .

[185]  H. Klein,et al.  The role of pyridoxal phosphate in the catalysis of glycogen phosphorylases. , 1980, Angewandte Chemie.

[186]  D. E. Kerr,et al.  Reaction of myoglobin with phenylhydrazine: a molecular doorstop. , 1984, Biochemistry.

[187]  S. Sligar,et al.  The role of Val68(E11) in ligand binding to sperm whale myoglobin. Site-directed mutagenesis of a synthetic gene. , 1990, The Journal of biological chemistry.

[188]  J. Changeux,et al.  The feedback control mechanisms of biosynthetic L-threonine deaminase by L-isoleucine. , 1961, Cold Spring Harbor symposia on quantitative biology.

[189]  J. Changeux,et al.  Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. , 1968, Biochemistry.

[190]  J. Changeux,et al.  Rapid kinetics of agonist binding and permeability response analyzed in parallel on acetylcholine receptor rich membranes from Torpedo marmorata. , 1983, Biochemistry.

[191]  J. Wyman,et al.  Linkage graphs: a study in the thermodynamics of macromolecules , 1984, Quarterly Reviews of Biophysics.

[192]  R. Poljak,et al.  Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution , 1986, Science.

[193]  M. Brunori,et al.  Ligand binding and stereochemical effects in hemocyanins , 1982, The EMBO journal.

[194]  P. Evans,et al.  Crystallographic structure of allosterically inhibited phosphofructokinase at 7 A resolution. , 1986, Journal of molecular biology.

[195]  J. Lakowicz,et al.  Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. , 1973, Biochemistry.